Abstract:Objective To develop a primary human hematopoietic stem/progenitor cell model for chronic myeloid leukemia (CML) and study signal transduction and molecular regulation mechanisms in CML. Methods We developed ...Abstract:Objective To develop a primary human hematopoietic stem/progenitor cell model for chronic myeloid leukemia (CML) and study signal transduction and molecular regulation mechanisms in CML. Methods We developed a human model of p210BCR/ABL positive CML by transducing normal human umbilical cord blood CD34+ cells with a retroviral vector containing the b3a2 bcr/abl cDNA. We also examined whether this model recreated the cellular phenotype of CML by assessing cell adhesion, cell migration, cell proliferation and cell survival. Results We found that significantly more myeloid colony forming units grew from p210BCR/ABL expressing cells, adhesion of p210BCR/ABL expressing CD34+ cells to fibronectin was decreased but migration over fibronectin was enhanced compared with mock transduced CD34+ cells. In this model, we showed that the presence of p210BCR/ABL leads to elevated levels of p27kip in p210BCR/ABL expressing CD34+ cells. We also showed that multidrug resistance-1 (MDR-1) Pgp was upregulated in the p210BCR/ABL expressing cells which correlates with the expression of p210BCR/ABL. Conclusion This primary human CML model recreates most of the features of CML and provides a useful tool to study signal transduction and downstream molecular regulation drived by the p210BCR/ABL oncogene in normal CD34+ cells.展开更多
基金ThisstudywassupportedbyTianjinKeyProjectFund grant 99380 45 11
文摘Abstract:Objective To develop a primary human hematopoietic stem/progenitor cell model for chronic myeloid leukemia (CML) and study signal transduction and molecular regulation mechanisms in CML. Methods We developed a human model of p210BCR/ABL positive CML by transducing normal human umbilical cord blood CD34+ cells with a retroviral vector containing the b3a2 bcr/abl cDNA. We also examined whether this model recreated the cellular phenotype of CML by assessing cell adhesion, cell migration, cell proliferation and cell survival. Results We found that significantly more myeloid colony forming units grew from p210BCR/ABL expressing cells, adhesion of p210BCR/ABL expressing CD34+ cells to fibronectin was decreased but migration over fibronectin was enhanced compared with mock transduced CD34+ cells. In this model, we showed that the presence of p210BCR/ABL leads to elevated levels of p27kip in p210BCR/ABL expressing CD34+ cells. We also showed that multidrug resistance-1 (MDR-1) Pgp was upregulated in the p210BCR/ABL expressing cells which correlates with the expression of p210BCR/ABL. Conclusion This primary human CML model recreates most of the features of CML and provides a useful tool to study signal transduction and downstream molecular regulation drived by the p210BCR/ABL oncogene in normal CD34+ cells.