A new tapered multimode interference (MMl)-based coherent lightwave combiner is reported. A comprehensive theoretical analysis of mode behaviors in the tapered MMI waveguide is presented, and the output characterist...A new tapered multimode interference (MMl)-based coherent lightwave combiner is reported. A comprehensive theoretical analysis of mode behaviors in the tapered MMI waveguide is presented, and the output characteristics of the tapered MMI combiners with various structures are demonstrated. The combiner is fabricated on a silicon-on-insulator (SO1) substrate. Due to its advantages of having no end-facet reflection,easy extension to a multi-port configuration, high tolerance for fabrication errors, and compact size, the tapered MMI is a good candidate for a coherent lightwave combiner to be used in large-scale photonic integrated circuits.展开更多
The fabrication of Bragg gratings on silicon-on-insulator (SOI) rib waveguides using electron-beam lithography is presented. The grating waveguide is optimally designed for actual photonic integration. Experimental ...The fabrication of Bragg gratings on silicon-on-insulator (SOI) rib waveguides using electron-beam lithography is presented. The grating waveguide is optimally designed for actual photonic integration. Experimental and theoretical evaluations of the Bragg grating are demonstrated. By thinning the SOl device layer and deeply etching the Bragg grating, a large grating coupling coefficient of 30cm^-1 is obtained.展开更多
文摘A new tapered multimode interference (MMl)-based coherent lightwave combiner is reported. A comprehensive theoretical analysis of mode behaviors in the tapered MMI waveguide is presented, and the output characteristics of the tapered MMI combiners with various structures are demonstrated. The combiner is fabricated on a silicon-on-insulator (SO1) substrate. Due to its advantages of having no end-facet reflection,easy extension to a multi-port configuration, high tolerance for fabrication errors, and compact size, the tapered MMI is a good candidate for a coherent lightwave combiner to be used in large-scale photonic integrated circuits.
文摘The fabrication of Bragg gratings on silicon-on-insulator (SOI) rib waveguides using electron-beam lithography is presented. The grating waveguide is optimally designed for actual photonic integration. Experimental and theoretical evaluations of the Bragg grating are demonstrated. By thinning the SOl device layer and deeply etching the Bragg grating, a large grating coupling coefficient of 30cm^-1 is obtained.