La_(2)NiO_(4)has a similar structure to La_(2)CuO_(4)and was proposed as a high-temperature superconductor based on magnetic-moment measurements decades ago.Nevertheless,with the exception for electrical resistance dr...La_(2)NiO_(4)has a similar structure to La_(2)CuO_(4)and was proposed as a high-temperature superconductor based on magnetic-moment measurements decades ago.Nevertheless,with the exception for electrical resistance drop behavior of about 4 orders of magnitude that is claimed to originate from the superconductivity ever observed in Sr-doped La_(N)iO_(4),most electrical data reported to date in La_(N)iO_(4)system exhibit a trivial insulating ground state.Here,we definitively identify the similar electrical resistance drop behavior of more than 3 orders of magnitude in La_(2)NiO_(4+δ).However,our extensive investigations reveal that this phenomenon is a novel insulatorto-metal transition,distinct from superconductivity.Intriguingly,compared to the weak magnetic-field effects,pressure can significantly suppress the transition and transform from the metallic to an insulating ground state,accompanied by an isostructural phase transition.Our work not only elucidates the fundamental properties of the metallic conducting ground state in La_(N)iO_(4)+δ,but also critically challenges the notion of superconductivity in single-layer lanthanum nickelates.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2023YFF0804100)the National Natural Science Foundation of China(Grant Nos.12274168,12074141,and 42102030)+3 种基金Jilin Provincial Science and Technology Development Project(Grant Nos.20210402054GH and 20220101011JC)the Program for Jilin University Science and Technology Innovative Research Team(Grant No.2021-TD-05)the support from the Fundamental Research Funds for the Central UniversitiesNational Major Science Facility Synergetic Extreme Condition User Facility Achievement Transformation Platform Construction(Grant No.2021FGWCXNLJSKJ01)。
文摘La_(2)NiO_(4)has a similar structure to La_(2)CuO_(4)and was proposed as a high-temperature superconductor based on magnetic-moment measurements decades ago.Nevertheless,with the exception for electrical resistance drop behavior of about 4 orders of magnitude that is claimed to originate from the superconductivity ever observed in Sr-doped La_(N)iO_(4),most electrical data reported to date in La_(N)iO_(4)system exhibit a trivial insulating ground state.Here,we definitively identify the similar electrical resistance drop behavior of more than 3 orders of magnitude in La_(2)NiO_(4+δ).However,our extensive investigations reveal that this phenomenon is a novel insulatorto-metal transition,distinct from superconductivity.Intriguingly,compared to the weak magnetic-field effects,pressure can significantly suppress the transition and transform from the metallic to an insulating ground state,accompanied by an isostructural phase transition.Our work not only elucidates the fundamental properties of the metallic conducting ground state in La_(N)iO_(4)+δ,but also critically challenges the notion of superconductivity in single-layer lanthanum nickelates.