期刊导航
期刊开放获取
重庆大学
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
一种POA-VMD和自编码器结合的风电机组轴承劣化指标构建及故障诊断方法
1
作者
李俊卿
耿继亚
+3 位作者
国晓宇
刘若尧
胡晓东
何玉灵
《机床与液压》
北大核心
2024年第13期219-226,共8页
针对目前轴承性能劣化指标的构建及故障诊断高度依赖专家经验,限制条件繁多,实际应用情景单一的问题,提出一种鹈鹕优化算法(POA)优化的变分模态分解(VMD)和自编码器结合的风机轴承劣化指标构建及故障诊断方法。首先利用POA-VMD算法将轴...
针对目前轴承性能劣化指标的构建及故障诊断高度依赖专家经验,限制条件繁多,实际应用情景单一的问题,提出一种鹈鹕优化算法(POA)优化的变分模态分解(VMD)和自编码器结合的风机轴承劣化指标构建及故障诊断方法。首先利用POA-VMD算法将轴承振动信号采用自适应方法分解为K个固有模态分量(IMF),并针对上述分量分别构建K个自编码器;然后以正常状态振动信号的分解结果为训练样本完成自编码器的训练,并以训练完成后模型的输出结果为基础构建轴承劣化指标,借助劣化指标监测轴承早期微弱故障;最后对故障时刻振动信号的IMF分量重构结果进行包络谱分析,确定故障的类型。经实验验证:该方法不仅可以清晰地展现轴承的劣化过程,对早期微弱故障敏感性高,而且在故障发生后可以准确诊断出故障类型。
展开更多
关键词
风电机组
轴承劣化
故障诊断
鹈鹕优化算法
自编码器
变分模态分解
下载PDF
职称材料
题名
一种POA-VMD和自编码器结合的风电机组轴承劣化指标构建及故障诊断方法
1
作者
李俊卿
耿继亚
国晓宇
刘若尧
胡晓东
何玉灵
机构
华北电力大学电气与电子工程学院
出处
《机床与液压》
北大核心
2024年第13期219-226,共8页
基金
国家自然科学基金面上项目(52177042)。
文摘
针对目前轴承性能劣化指标的构建及故障诊断高度依赖专家经验,限制条件繁多,实际应用情景单一的问题,提出一种鹈鹕优化算法(POA)优化的变分模态分解(VMD)和自编码器结合的风机轴承劣化指标构建及故障诊断方法。首先利用POA-VMD算法将轴承振动信号采用自适应方法分解为K个固有模态分量(IMF),并针对上述分量分别构建K个自编码器;然后以正常状态振动信号的分解结果为训练样本完成自编码器的训练,并以训练完成后模型的输出结果为基础构建轴承劣化指标,借助劣化指标监测轴承早期微弱故障;最后对故障时刻振动信号的IMF分量重构结果进行包络谱分析,确定故障的类型。经实验验证:该方法不仅可以清晰地展现轴承的劣化过程,对早期微弱故障敏感性高,而且在故障发生后可以准确诊断出故障类型。
关键词
风电机组
轴承劣化
故障诊断
鹈鹕优化算法
自编码器
变分模态分解
Keywords
wind turbines
bearing deterioration
fault diagnosis
pelican optimization algorithm
self-encoder
variational modal decomposition
分类号
TM315 [电气工程—电机]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
一种POA-VMD和自编码器结合的风电机组轴承劣化指标构建及故障诊断方法
李俊卿
耿继亚
国晓宇
刘若尧
胡晓东
何玉灵
《机床与液压》
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部