传统对含缺陷管道失效应力的预测方法存在误差偏大的问题。针对该问题,利用MATLAB软件建立基于PSO–GPR(particle swarm optimization–Gaussian process regression)含缺陷管道失效应力预测模型。通过对60组含缺陷管道的试验数据进行测...传统对含缺陷管道失效应力的预测方法存在误差偏大的问题。针对该问题,利用MATLAB软件建立基于PSO–GPR(particle swarm optimization–Gaussian process regression)含缺陷管道失效应力预测模型。通过对60组含缺陷管道的试验数据进行测试,发现预测结果与实测结果均在95%置信区间内,表明可以将均值作为预测结果。对预测结果进行分析表明:高斯过程回归的预测结果与实测结果的最小相对误差为0.003%,最大相对误差为1.205%,平均相对误差为0.319%,基于预测结果和实测结果的散点均落在曲线y=x的±1.3%误差带中,验证了高斯过程回归预测模型的准确性,为管道的工程实际应用与维修提供较为精准的判断依据。展开更多
文摘传统对含缺陷管道失效应力的预测方法存在误差偏大的问题。针对该问题,利用MATLAB软件建立基于PSO–GPR(particle swarm optimization–Gaussian process regression)含缺陷管道失效应力预测模型。通过对60组含缺陷管道的试验数据进行测试,发现预测结果与实测结果均在95%置信区间内,表明可以将均值作为预测结果。对预测结果进行分析表明:高斯过程回归的预测结果与实测结果的最小相对误差为0.003%,最大相对误差为1.205%,平均相对误差为0.319%,基于预测结果和实测结果的散点均落在曲线y=x的±1.3%误差带中,验证了高斯过程回归预测模型的准确性,为管道的工程实际应用与维修提供较为精准的判断依据。