Nanomaterials have attracted considerable interest owing to their unique physicochemical properties.The wide application of nanomaterials has raised many concerns about their potential risks to human health and the en...Nanomaterials have attracted considerable interest owing to their unique physicochemical properties.The wide application of nanomaterials has raised many concerns about their potential risks to human health and the environment.Metal oxide nanopartides(MONPs),one of the main members of nanomaterials,have been applied in various fields,such as food,medicine,cosmetics,and sensors.This review highlights the bio-toxic effects of widely applied MONPs and their underlying mechanisms.Two main underlying toxicity mechanisms,reactive oxygen species(ROS)-and non-ROS-mediated toxidties,of MONPs have been widely accepted.ROS activates oxidative stress,which leads to lipid peroxidation and cell membrane damage.In addition,ROS can trigger the apoptotic pathway by activating caspase-9 and-3.Non-ROS-mediated toxicity mechanism includes the effect of released ions,excessive accumulation of NPs on the cell surface,and combination of NPs with specific death receptors.Furthermore,the combined toxicity evaluation of some MONPs is also discussed.Toxicity may dramatically change when nanomaterials are used in a combined system because the characteristics of NPs that play a key role in their toxicity such as size,surface properties,and chemical nature in the complex system are different from the pristine NPs.展开更多
In recent years,numerous classes of carbon-based nanomaterials,such as carbon nanotubes(CNTs),carbon dots(CDs),graphene and its derivatives,graphene quantum dots(GQDs)and fullerene,have been deeply explored for potent...In recent years,numerous classes of carbon-based nanomaterials,such as carbon nanotubes(CNTs),carbon dots(CDs),graphene and its derivatives,graphene quantum dots(GQDs)and fullerene,have been deeply explored for potential applications in the biological fields,e.g.,bioimaging[1-5],biosensing[6,7],drug nanocarrier[8-12],etc.,owing to their unique and alluring physical and chemical properties.Among them,GQDs are a subject of interesting and promising research with many advantages such as strong signal strength,resistance to photobleaching,tunable fluorescence emissions,high sensitivity and biocompatibility[13-35].Compared with those semiconductor QDs,GQDs have remarkable superior让y in low toxicity,excellent biocompatibility,low cost,and abundance of original materials in nature[36].High quality GQDs have a wide range of applications,such as light emitting diodes(LEDs)[37,38],solar cells[39,40]and photocatalysis[41,42],aside from biological fields.Up to now,various GQDs with different photoluminescent(PL)colors have been synthesized by two dominating approaches including top-down and bottomup methods.The top-down method refers to cutting bulk carbon materials into nanoscale-carbon materials by necessary physical and chemical processes[43].展开更多
基金supported by the National Natural Science Foundation of China(21371115,11025526,40830744, 41073073,and 21101104)the National Basic Research Program of China(2011CB933402)+1 种基金the Innovation Program of Shanghai Municipal Education Commission(14YZ025)the Program for Innovative Research Team in University(IRT13078)
文摘Nanomaterials have attracted considerable interest owing to their unique physicochemical properties.The wide application of nanomaterials has raised many concerns about their potential risks to human health and the environment.Metal oxide nanopartides(MONPs),one of the main members of nanomaterials,have been applied in various fields,such as food,medicine,cosmetics,and sensors.This review highlights the bio-toxic effects of widely applied MONPs and their underlying mechanisms.Two main underlying toxicity mechanisms,reactive oxygen species(ROS)-and non-ROS-mediated toxidties,of MONPs have been widely accepted.ROS activates oxidative stress,which leads to lipid peroxidation and cell membrane damage.In addition,ROS can trigger the apoptotic pathway by activating caspase-9 and-3.Non-ROS-mediated toxicity mechanism includes the effect of released ions,excessive accumulation of NPs on the cell surface,and combination of NPs with specific death receptors.Furthermore,the combined toxicity evaluation of some MONPs is also discussed.Toxicity may dramatically change when nanomaterials are used in a combined system because the characteristics of NPs that play a key role in their toxicity such as size,surface properties,and chemical nature in the complex system are different from the pristine NPs.
基金supported by the National Natural Science Foundation of China(21371115,11025526,1175107,21101104 and 11422542)Shanghai University-Universal Medical Imaging Diagnostic Research Foundation(19H00100)the Program for Changjiang Scholars and Innovative Research Team in University(IRT13078)
文摘In recent years,numerous classes of carbon-based nanomaterials,such as carbon nanotubes(CNTs),carbon dots(CDs),graphene and its derivatives,graphene quantum dots(GQDs)and fullerene,have been deeply explored for potential applications in the biological fields,e.g.,bioimaging[1-5],biosensing[6,7],drug nanocarrier[8-12],etc.,owing to their unique and alluring physical and chemical properties.Among them,GQDs are a subject of interesting and promising research with many advantages such as strong signal strength,resistance to photobleaching,tunable fluorescence emissions,high sensitivity and biocompatibility[13-35].Compared with those semiconductor QDs,GQDs have remarkable superior让y in low toxicity,excellent biocompatibility,low cost,and abundance of original materials in nature[36].High quality GQDs have a wide range of applications,such as light emitting diodes(LEDs)[37,38],solar cells[39,40]and photocatalysis[41,42],aside from biological fields.Up to now,various GQDs with different photoluminescent(PL)colors have been synthesized by two dominating approaches including top-down and bottomup methods.The top-down method refers to cutting bulk carbon materials into nanoscale-carbon materials by necessary physical and chemical processes[43].