This paper contains two contents. The first is seismic velocity of felsic crystalline rocks of North China at room temperature and high pressures and at both high temperatures and pressures. The second is heating acou...This paper contains two contents. The first is seismic velocity of felsic crystalline rocks of North China at room temperature and high pressures and at both high temperatures and pressures. The second is heating acoustic emission of felsic rocks at atmosphere pressure and the temperature of the quartz (-( transition. The results of these experiments show that velocities of the felsic crystalline rocks are obviously lower than that of the basic rocks and no visible relationship with metamorphic phase. The velocity curves of rocks containing quartz display peaks of the (-( phase reaction, which are different from other rocks in configuration. When the heating temperature is up to the phase transition temperature of quartz at the atmosphere pressure, felsic hypometamorphic rocks and magma granite produce acoustic emission. While the other kind of the granite generated by metasomatism does not produce acoustic emission. These results have the following implications. It explains the crustal constitution of the North China craton in combination with other geoscientific data, and clarifies the existing space of ( quartz and ( quartz. It also indicates that the (-( quartz transition and dehydration melting of amphibole and biotite in the lower crustal rocks of the Cenozoic tectonic subsidence area are likely associated with faulting (tensional fault) and seismic activities.展开更多
基金State Natural Science Foundation of China (49474220).Contribution No. 2000B0010, Institute of Geology, China Seismological Bur
文摘This paper contains two contents. The first is seismic velocity of felsic crystalline rocks of North China at room temperature and high pressures and at both high temperatures and pressures. The second is heating acoustic emission of felsic rocks at atmosphere pressure and the temperature of the quartz (-( transition. The results of these experiments show that velocities of the felsic crystalline rocks are obviously lower than that of the basic rocks and no visible relationship with metamorphic phase. The velocity curves of rocks containing quartz display peaks of the (-( phase reaction, which are different from other rocks in configuration. When the heating temperature is up to the phase transition temperature of quartz at the atmosphere pressure, felsic hypometamorphic rocks and magma granite produce acoustic emission. While the other kind of the granite generated by metasomatism does not produce acoustic emission. These results have the following implications. It explains the crustal constitution of the North China craton in combination with other geoscientific data, and clarifies the existing space of ( quartz and ( quartz. It also indicates that the (-( quartz transition and dehydration melting of amphibole and biotite in the lower crustal rocks of the Cenozoic tectonic subsidence area are likely associated with faulting (tensional fault) and seismic activities.