板结构与其他构件的装配关系可用不同的边界条件进行模拟,然而针对不同边界条件的板结构进行动力学特性分析,目前缺乏统一的数学建模方法。以混合弹性边界条件下加筋、开孔的板类结构的横向振动为例,利用Rayleigh-Ritz法和模态叠加法求...板结构与其他构件的装配关系可用不同的边界条件进行模拟,然而针对不同边界条件的板结构进行动力学特性分析,目前缺乏统一的数学建模方法。以混合弹性边界条件下加筋、开孔的板类结构的横向振动为例,利用Rayleigh-Ritz法和模态叠加法求解矩形加筋多孔板在简谐激励下的动力学响应问题。采用将开孔板与加强筋沿交界面进行分离,结合改进的傅里叶级数设定开孔板的横向振动位移函数,利用不同刚度弹簧模拟混合弹性边界,推导加筋矩形开多孔板和边界弹簧系统的动能与势能,求解其在简谐激励下的动力学响应。经对比,理论计算结果与有限元(Finite Element Method,FEM)结果吻合良好。此外,用同样的方法分析不同孔尺寸对结构固有频率和响应的影响。研究发现,可通过改变加筋板的开孔形状、尺寸对结构的振动特性进行调整。研究成果可为混合弹性边界板结构动力分析提供一种新的技术途径,可以简化加筋开孔板结构动力分析的步骤。展开更多
Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a movi...Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a moving rough sea surface is studied based on integral equation and parabolic equation.And with the principles of grating and constructive interference,the mechanism of this acoustic scattering modulation is explained.The periodicity of the interference of moving rough sea surface will lead to the interference of the scattering field at a series of discrete angles,which will form comb-like and frequency-shift characteristics on the intensity and the frequency spectrum of the acoustic scattering field,respectively,which is a high-order Bragg scattering phenomenon.Unlike the conventional Doppler effect,the frequency shifts of the Bragg scattering phenomenon are multiples of the undulating sea surface frequency and are independent of the incident sound wave frequency.Therefore,even if a low-frequency underwater acoustic field is incident,it will produce obvious frequency shifts.Moreover,under the action of ideal sinusoidal waves,swells,fully grown wind waves,unsteady wind waves,or mixed waves,different moving rough sea surfaces create different acoustic scattering processes and possess different frequency shift characteristics.For the swell wave,which tends to be a single harmonic wave,the moving rough sea surface produces more obvious high-order scattering and frequency shifts.The same phenomena are observed on the sea surface under fully grown wind waves,however,the frequency shift slightly offsets the multiple peak frequencies of the wind wave spectrum.Comparing with the swell and fully-grown wind waves,the acoustic scattering and frequency shift are not obvious for the sea surface under unsteady wind waves.展开更多
文摘板结构与其他构件的装配关系可用不同的边界条件进行模拟,然而针对不同边界条件的板结构进行动力学特性分析,目前缺乏统一的数学建模方法。以混合弹性边界条件下加筋、开孔的板类结构的横向振动为例,利用Rayleigh-Ritz法和模态叠加法求解矩形加筋多孔板在简谐激励下的动力学响应问题。采用将开孔板与加强筋沿交界面进行分离,结合改进的傅里叶级数设定开孔板的横向振动位移函数,利用不同刚度弹簧模拟混合弹性边界,推导加筋矩形开多孔板和边界弹簧系统的动能与势能,求解其在简谐激励下的动力学响应。经对比,理论计算结果与有限元(Finite Element Method,FEM)结果吻合良好。此外,用同样的方法分析不同孔尺寸对结构固有频率和响应的影响。研究发现,可通过改变加筋板的开孔形状、尺寸对结构的振动特性进行调整。研究成果可为混合弹性边界板结构动力分析提供一种新的技术途径,可以简化加筋开孔板结构动力分析的步骤。
基金Project supported by the IACAS Young Elite Researcher Project(Grant No.QNYC201703)the Rising Star Foundation of Integrated Research Center for Islands and Reefs Sciences,CAS(Grant No.ZDRW-XH-2021-2-04)the Key Laboratory Foundation of Acoustic Science and Technology(Grant No.2021-JCJQ-LB-066-08).
文摘Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a moving rough sea surface is studied based on integral equation and parabolic equation.And with the principles of grating and constructive interference,the mechanism of this acoustic scattering modulation is explained.The periodicity of the interference of moving rough sea surface will lead to the interference of the scattering field at a series of discrete angles,which will form comb-like and frequency-shift characteristics on the intensity and the frequency spectrum of the acoustic scattering field,respectively,which is a high-order Bragg scattering phenomenon.Unlike the conventional Doppler effect,the frequency shifts of the Bragg scattering phenomenon are multiples of the undulating sea surface frequency and are independent of the incident sound wave frequency.Therefore,even if a low-frequency underwater acoustic field is incident,it will produce obvious frequency shifts.Moreover,under the action of ideal sinusoidal waves,swells,fully grown wind waves,unsteady wind waves,or mixed waves,different moving rough sea surfaces create different acoustic scattering processes and possess different frequency shift characteristics.For the swell wave,which tends to be a single harmonic wave,the moving rough sea surface produces more obvious high-order scattering and frequency shifts.The same phenomena are observed on the sea surface under fully grown wind waves,however,the frequency shift slightly offsets the multiple peak frequencies of the wind wave spectrum.Comparing with the swell and fully-grown wind waves,the acoustic scattering and frequency shift are not obvious for the sea surface under unsteady wind waves.