随着计算机技术的不断普及,快速获取目标物体或空间点集的包络体成为一种重要需求,基于此类问题我们提出了一种基于体素化生成包络体的方法,该方法对体素数据进行操作时运用了并行运算OpenMP(Open Multi-Processing)技术以及C++AMP(Acce...随着计算机技术的不断普及,快速获取目标物体或空间点集的包络体成为一种重要需求,基于此类问题我们提出了一种基于体素化生成包络体的方法,该方法对体素数据进行操作时运用了并行运算OpenMP(Open Multi-Processing)技术以及C++AMP(Accelerated Massive Parallelism with Microsoft Visual C++)技术,其中C++AMP技术可以极大的提高运算速度。传统意义上包络体应用于路径规划、工业装配等领域,将包络体技术运用到微纳器件虚拟运行的仿真中。通过将运行器件包络体计算引入到微纳器件的仿真系统中可以得到微纳器件的整个运动空间,进而直观有效的辅助微纳器件设计。展开更多
文摘随着计算机技术的不断普及,快速获取目标物体或空间点集的包络体成为一种重要需求,基于此类问题我们提出了一种基于体素化生成包络体的方法,该方法对体素数据进行操作时运用了并行运算OpenMP(Open Multi-Processing)技术以及C++AMP(Accelerated Massive Parallelism with Microsoft Visual C++)技术,其中C++AMP技术可以极大的提高运算速度。传统意义上包络体应用于路径规划、工业装配等领域,将包络体技术运用到微纳器件虚拟运行的仿真中。通过将运行器件包络体计算引入到微纳器件的仿真系统中可以得到微纳器件的整个运动空间,进而直观有效的辅助微纳器件设计。