目的探讨应用碳点标记芥子碱硫氰酸盐,以明确其分子作用机制的可行性。方法以碳点为分子标记物,对芥子碱硫氰酸盐标记,进行细胞培养实验。以激光共聚焦成像技术观察碳点标记后的芥子碱硫氰酸盐的细胞的成像效果,进而以CCK-8法检验碳点...目的探讨应用碳点标记芥子碱硫氰酸盐,以明确其分子作用机制的可行性。方法以碳点为分子标记物,对芥子碱硫氰酸盐标记,进行细胞培养实验。以激光共聚焦成像技术观察碳点标记后的芥子碱硫氰酸盐的细胞的成像效果,进而以CCK-8法检验碳点及标记后的芥子碱硫氰酸盐的细胞毒性。结果采用共聚焦皿培养Ha Ca T细胞株。以空白碳点作为对照样,碳点标记的芥子碱硫氰酸盐作为实验样,激光共聚焦显微镜下观察,显绿光荧光。随着培养时间增加,荧光信号均逐渐增强,提示Ha Ca T细胞对芥子碱硫氰酸盐的摄入量越来越大。结论碳量子点可以有效标记芥子碱硫氰酸盐,有助于揭示芥子碱硫氰酸盐的分子作用机制。展开更多
CaAl2O4:Eu3+,R+(R=Li+,Na+,K+) red phosphors were synthesized by solid state reaction method.X-ray diffraction(XRD) and photoluminescence(PL) were employed to characterize their structural and luminescent properties.It...CaAl2O4:Eu3+,R+(R=Li+,Na+,K+) red phosphors were synthesized by solid state reaction method.X-ray diffraction(XRD) and photoluminescence(PL) were employed to characterize their structural and luminescent properties.It was found that the optimal sintering temperature and sintering time were 1200 °C and 4 h,respectively.The optimal concentration of doped Eu3+ was 3 mol.%.Furthermore,under ultraviolet excitation with a wavelength of 254 nm,these samples showed red luminescence which were probably attributed to...展开更多
A novel biosorbent was developed by coating chitosan, a naturally and abundantly available biopolymer, on to activated alumina based on oil shale ash via crosslinking. The adsorbent was characterized by various techni...A novel biosorbent was developed by coating chitosan, a naturally and abundantly available biopolymer, on to activated alumina based on oil shale ash via crosslinking. The adsorbent was characterized by various techniques, such as Fourier transform infrared spectroscopy, scarming' elec.tron micros cop.y, the rmogravimetric-differentialthermal analysis, and X-ray photoelectron spectroscope. Batch isothermal equilibrium adsorption experiments were condcted to evaluate the adsorbent for the removal of Cu(Ⅱ) from wastewater. The effect of pH and agitation time on the adsorption capacity was also investigated, indicating that the optimum pH was 6.0. The equilibrium adsorp-tion data were correlated with Langmuir and Freundlich models. The maximum monolayer adsorption capacity of chitosan coated alumina sorbent as obtained from Langmuir adsorption isotherm was fotmd to be 315.46 mg.g-1 for Cu(Ⅱ). The adsorbent loaded with Cu(Ⅱ) was readily regenerated using 0.1 mol.L-1 sodium hydroxide solution. All these indicated that chitosan coated alumina adsorbent not only have high adsorption activity, but also had good stability in the wastewater treatment process.展开更多
文摘目的探讨应用碳点标记芥子碱硫氰酸盐,以明确其分子作用机制的可行性。方法以碳点为分子标记物,对芥子碱硫氰酸盐标记,进行细胞培养实验。以激光共聚焦成像技术观察碳点标记后的芥子碱硫氰酸盐的细胞的成像效果,进而以CCK-8法检验碳点及标记后的芥子碱硫氰酸盐的细胞毒性。结果采用共聚焦皿培养Ha Ca T细胞株。以空白碳点作为对照样,碳点标记的芥子碱硫氰酸盐作为实验样,激光共聚焦显微镜下观察,显绿光荧光。随着培养时间增加,荧光信号均逐渐增强,提示Ha Ca T细胞对芥子碱硫氰酸盐的摄入量越来越大。结论碳量子点可以有效标记芥子碱硫氰酸盐,有助于揭示芥子碱硫氰酸盐的分子作用机制。
基金supported by High Technology Research and Development program foundation of China (2007AA06Z202) (863)Natural Science Foundation of Jilin Province of China (20070405)State Key Laboratory of Rare Earth Resource Utilization of China (R02020202K)
文摘CaAl2O4:Eu3+,R+(R=Li+,Na+,K+) red phosphors were synthesized by solid state reaction method.X-ray diffraction(XRD) and photoluminescence(PL) were employed to characterize their structural and luminescent properties.It was found that the optimal sintering temperature and sintering time were 1200 °C and 4 h,respectively.The optimal concentration of doped Eu3+ was 3 mol.%.Furthermore,under ultraviolet excitation with a wavelength of 254 nm,these samples showed red luminescence which were probably attributed to...
基金Supported by the National Innovative Projects with Cooperation in terms of Production,Study and Research (OSR-05)the National Science and Technology Major Projects (2008ZX05018-005)
文摘A novel biosorbent was developed by coating chitosan, a naturally and abundantly available biopolymer, on to activated alumina based on oil shale ash via crosslinking. The adsorbent was characterized by various techniques, such as Fourier transform infrared spectroscopy, scarming' elec.tron micros cop.y, the rmogravimetric-differentialthermal analysis, and X-ray photoelectron spectroscope. Batch isothermal equilibrium adsorption experiments were condcted to evaluate the adsorbent for the removal of Cu(Ⅱ) from wastewater. The effect of pH and agitation time on the adsorption capacity was also investigated, indicating that the optimum pH was 6.0. The equilibrium adsorp-tion data were correlated with Langmuir and Freundlich models. The maximum monolayer adsorption capacity of chitosan coated alumina sorbent as obtained from Langmuir adsorption isotherm was fotmd to be 315.46 mg.g-1 for Cu(Ⅱ). The adsorbent loaded with Cu(Ⅱ) was readily regenerated using 0.1 mol.L-1 sodium hydroxide solution. All these indicated that chitosan coated alumina adsorbent not only have high adsorption activity, but also had good stability in the wastewater treatment process.