Nano-optomechanical systems,capable of supporting enhanced light-matter interactions,have wide applications in studying quantum entanglement and quantum information processors.Yet,preparing optical telecomband entangl...Nano-optomechanical systems,capable of supporting enhanced light-matter interactions,have wide applications in studying quantum entanglement and quantum information processors.Yet,preparing optical telecomband entanglement within a single optomechanical nanobeam remains blank.We propose and design a triply resonant optomechanical nanobeam to generate steady-state entangled propagating optical modes and present its quantum-enhanced performance for teleportation-based quantum state transfer under realistic conditions.Remarkably,the entanglement quantified by logarithmic negativity can obtain E_(N)=1.Furthermore,with structural imperfections induced by realistic fabrication processes considered,the device still shows great robustness.Together with quantum interfaces between mechanical motion and solid-state qubit processors,the proposed device potentially paves the way for versatile nodes in long-distance quantum networks.展开更多
基金supported by the Sichuan Science and Technology Program(Grant Nos.2022YFSY0061,2022YFSY0062,2022YFSY0063,2023YFSY0060,2023YFSY0058,and 2023YFSY0059)the National Key Research and Development Program of China(Grant No.2022YFA1405900)+1 种基金the National Natural Science Foundation of China(Grant Nos.92365106,62005039,91836102,U19A2076,12074058,and 62174010)the Innovation Program for Quantum Science and Technology(Grant Nos.2021ZD0300701 and 2021ZD0301702)。
文摘Nano-optomechanical systems,capable of supporting enhanced light-matter interactions,have wide applications in studying quantum entanglement and quantum information processors.Yet,preparing optical telecomband entanglement within a single optomechanical nanobeam remains blank.We propose and design a triply resonant optomechanical nanobeam to generate steady-state entangled propagating optical modes and present its quantum-enhanced performance for teleportation-based quantum state transfer under realistic conditions.Remarkably,the entanglement quantified by logarithmic negativity can obtain E_(N)=1.Furthermore,with structural imperfections induced by realistic fabrication processes considered,the device still shows great robustness.Together with quantum interfaces between mechanical motion and solid-state qubit processors,the proposed device potentially paves the way for versatile nodes in long-distance quantum networks.