Anelasticity, as an intrinsic property of amorphous solids, plays a significant role in understanding their relaxation and deformation mechanism. However, due to the lack of long-range order in amorphous solids, the s...Anelasticity, as an intrinsic property of amorphous solids, plays a significant role in understanding their relaxation and deformation mechanism. However, due to the lack of long-range order in amorphous solids, the structural origin of anelasticity and its distinction from plasticity remain elusive. In this work, using frozen matrix method, we study the transition from anelasticity to plasticity in a two-dimensional model glass. Three distinct mechanical behaviors, namely,elasticity, anelasticity, and plasticity, are identified with control parameters in the amorphous solid. Through the study of finite size effects on these mechanical behaviors, it is revealed that anelasticity can be distinguished from plasticity.Anelasticity serves as an intrinsic bridge connecting the elasticity and plasticity of amorphous solids. Additionally, it is observed that anelastic events are localized, while plastic events are subextensive. The transition from anelasticity to plasticity is found to resemble the entanglement of long-range interactions between element excitations. This study sheds light on the fundamental nature of anelasticity as a key property of element excitations in amorphous solids.展开更多
基金Project supported by Guangdong Major Project of Basic and Applied Basic Research,China (Grant No.2019B030302010)the National Natural Science Foundation of China (Grant No.52130108)+1 种基金Guangdong Basic and Applied Basic Research,China (Grant No.2021B1515140005)Pearl River Talent Recruitment Program (Grant No.2021QN02C04)。
文摘Anelasticity, as an intrinsic property of amorphous solids, plays a significant role in understanding their relaxation and deformation mechanism. However, due to the lack of long-range order in amorphous solids, the structural origin of anelasticity and its distinction from plasticity remain elusive. In this work, using frozen matrix method, we study the transition from anelasticity to plasticity in a two-dimensional model glass. Three distinct mechanical behaviors, namely,elasticity, anelasticity, and plasticity, are identified with control parameters in the amorphous solid. Through the study of finite size effects on these mechanical behaviors, it is revealed that anelasticity can be distinguished from plasticity.Anelasticity serves as an intrinsic bridge connecting the elasticity and plasticity of amorphous solids. Additionally, it is observed that anelastic events are localized, while plastic events are subextensive. The transition from anelasticity to plasticity is found to resemble the entanglement of long-range interactions between element excitations. This study sheds light on the fundamental nature of anelasticity as a key property of element excitations in amorphous solids.
基金financially supported by Guangdong Basic and Applied Basic Research,China(2019B1515130005,2020B1515130007,2021B1515140005,2022A1515010347)Guangdong Major Project of Basic and Applied Basic Research,China(2019B030302010)+2 种基金the National Natural Science Foundation of China(52071222,61888102,52101191)the National Key Research and Development Program of China(2021YFA0716302)the Program for the Experiments for Space Exploration from Qian Xuesen Laboratory,China Academy of Space Technology(TKTSPY-2020-03-02)。