The energy-efficient purification of methane from C2-hydrocarbons is of great significance for the upgrading of natural gas. So does the capture of carbon dioxide for remission of greenhouse effect. It is well establi...The energy-efficient purification of methane from C2-hydrocarbons is of great significance for the upgrading of natural gas. So does the capture of carbon dioxide for remission of greenhouse effect. It is well established that some functional sites, such as open metals sites, Lewis basic nitrogen sites and fluorine groups, have shown significantly enhanced affinity toward more polarizable molecules. Thus, a water-stable Eu3+-based fcu-metal-organic framework(MOF)(compound 1) with amino functional groups has been successfully constructed through a reticular chemistry approach.As a result, the activated compound 1 exhibits moderately high uptakes of C2-hydrocarbons, but a less obvious adsorption of CH4 at the same conditions. Among them, the adsorption capacity of C2 H2 is up to 143.6 cm3 cm-3 and a relatively high selectivity of C2 H2/CH4(107.7) is obtained at near room temperature. Moreover, compound 1 is also validated as an exceptional adsorbent for CO2 capture, with the fairly high capacity of CO2(92.6 cm3 cm-3) and CO2/N2 selectivity(151.7) at ambient conditions. The excellent performance of compound 1 is mainly driven by the exposed amino functional groups within the contracted pores. Such effect thus leads to the achievement of dual-functional platform for methane purification and carbon dioxide capture. Furthermore, compound 1 features a satisfactory water stability,which is confirmed by the powder X-ray diffraction(PXRD)analysis and the retest of porosity after being soaked in water.展开更多
Hydrogen sulphide(H2 S)is a common air pollutant,which is produced in various industry processes.Therefore,it is of crucial importance to detect H2 S in real time.Many fluorescent sensors were reported aiming at detec...Hydrogen sulphide(H2 S)is a common air pollutant,which is produced in various industry processes.Therefore,it is of crucial importance to detect H2 S in real time.Many fluorescent sensors were reported aiming at detecting H2 S in solution;however,the fluorescence sensing of gaseous H2 S has not yet been reported.In this work,we utilized the post-functionalized fluorescent film,MIL-100(In)@Eu3+/Cu2+film,realizing fluorescence turn-on sensing of gaseous H2 S at room temperature for the first time with the limit of detection as low as 0.535 ppm,which is comparable to some reported fluorescent probes for S2-ions and semiconductor based gaseous H2 S sensors.The sensor was designed due to the strong affinity of H2 S with Cu2+.With the formation of CuS,the"antenna effect"between the ligand and Eu3+recovered,resulting in the fluorescence turn-on of Eu3+emission.Additionally,we proposed a new method to realize multi-colour anti-counterfeiting patterns with lanthanide ions ink,taking advantage of the extraordinary smooth surface and uncoordinated carboxylate groups within the MIL-100(In)film.展开更多
基金supported by the National Natural Science Foundation of China(U1609219,51632008,61721005,51432001and 51772268)Zhejiang Provincial Natural Science Foundation(LD18E020001)
文摘The energy-efficient purification of methane from C2-hydrocarbons is of great significance for the upgrading of natural gas. So does the capture of carbon dioxide for remission of greenhouse effect. It is well established that some functional sites, such as open metals sites, Lewis basic nitrogen sites and fluorine groups, have shown significantly enhanced affinity toward more polarizable molecules. Thus, a water-stable Eu3+-based fcu-metal-organic framework(MOF)(compound 1) with amino functional groups has been successfully constructed through a reticular chemistry approach.As a result, the activated compound 1 exhibits moderately high uptakes of C2-hydrocarbons, but a less obvious adsorption of CH4 at the same conditions. Among them, the adsorption capacity of C2 H2 is up to 143.6 cm3 cm-3 and a relatively high selectivity of C2 H2/CH4(107.7) is obtained at near room temperature. Moreover, compound 1 is also validated as an exceptional adsorbent for CO2 capture, with the fairly high capacity of CO2(92.6 cm3 cm-3) and CO2/N2 selectivity(151.7) at ambient conditions. The excellent performance of compound 1 is mainly driven by the exposed amino functional groups within the contracted pores. Such effect thus leads to the achievement of dual-functional platform for methane purification and carbon dioxide capture. Furthermore, compound 1 features a satisfactory water stability,which is confirmed by the powder X-ray diffraction(PXRD)analysis and the retest of porosity after being soaked in water.
基金supported by the National Natural Science Foundation of China(U1609219,51632008,61721005,51432001and 51772268)Zhejiang Provincial Natural Science Foundation(LD18E020001)
文摘Hydrogen sulphide(H2 S)is a common air pollutant,which is produced in various industry processes.Therefore,it is of crucial importance to detect H2 S in real time.Many fluorescent sensors were reported aiming at detecting H2 S in solution;however,the fluorescence sensing of gaseous H2 S has not yet been reported.In this work,we utilized the post-functionalized fluorescent film,MIL-100(In)@Eu3+/Cu2+film,realizing fluorescence turn-on sensing of gaseous H2 S at room temperature for the first time with the limit of detection as low as 0.535 ppm,which is comparable to some reported fluorescent probes for S2-ions and semiconductor based gaseous H2 S sensors.The sensor was designed due to the strong affinity of H2 S with Cu2+.With the formation of CuS,the"antenna effect"between the ligand and Eu3+recovered,resulting in the fluorescence turn-on of Eu3+emission.Additionally,we proposed a new method to realize multi-colour anti-counterfeiting patterns with lanthanide ions ink,taking advantage of the extraordinary smooth surface and uncoordinated carboxylate groups within the MIL-100(In)film.