LiCoO_2 is one of the most important cathode materials for high energy density lithium ion batteries. The compressed behavior of LiCoO_2 under high pressure has been investigated using synchrotron radiation x-ray diff...LiCoO_2 is one of the most important cathode materials for high energy density lithium ion batteries. The compressed behavior of LiCoO_2 under high pressure has been investigated using synchrotron radiation x-ray diffraction. It is found that LiCoO_2 maintains hexagonal symmetry up to the maximum pressure of 30.1 GPa without phase transition. The elastic modulus at ambient pressure is 159.5(2.2) GPa and its first derivative is 3.92(0.23). In addition, the high-pressure compression behavior of LiCoO_2 has been studied by first principles calculations. The derived bulk modulus of LiCoO_2 is 141.6 GPa.展开更多
The work functions of the (110) and (10(3) surfaces of LaB6 are determined from ambient pressure to 39.1 GPa. The work function of the (110) surface slowly decreases but that of the (100) surface remains at a...The work functions of the (110) and (10(3) surfaces of LaB6 are determined from ambient pressure to 39.1 GPa. The work function of the (110) surface slowly decreases but that of the (100) surface remains at a relatively constant value. To determine the reason for this difference, the electron density distribution (EDD) is determined from high-pressure single-crystal x-ray diffraction data by the maximum entropy method. The EDD results show that the chemical bond properties in LaB6 play a key role also investigated by single-crystal x-ray diffraction. In observed from ambient pressure to 39.1 GPa. The structural stability of LaB6 under high pressure is this study, no structural or electronic phase transition is展开更多
基金Project supported by the Program of Education Department of Sichuan Province of China(Grant No.18ZB0506)the Project of Sichuan University o Arts and Science,China(Grant No.2017KZ001Z)+1 种基金Outstanding Talent Introduction Project of Henan Institute of Science and Technology,China(Gran No.203010617011)performed at 4W2 beamline of Beijing Synchrotron Radiation Facility(BSRF),which was supported by Chinese Academy of Sciences(Grant Nos.KJCX2-SWN03 and KJCX2-SW-N20)
文摘LiCoO_2 is one of the most important cathode materials for high energy density lithium ion batteries. The compressed behavior of LiCoO_2 under high pressure has been investigated using synchrotron radiation x-ray diffraction. It is found that LiCoO_2 maintains hexagonal symmetry up to the maximum pressure of 30.1 GPa without phase transition. The elastic modulus at ambient pressure is 159.5(2.2) GPa and its first derivative is 3.92(0.23). In addition, the high-pressure compression behavior of LiCoO_2 has been studied by first principles calculations. The derived bulk modulus of LiCoO_2 is 141.6 GPa.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11274030 and 11474281
文摘The work functions of the (110) and (10(3) surfaces of LaB6 are determined from ambient pressure to 39.1 GPa. The work function of the (110) surface slowly decreases but that of the (100) surface remains at a relatively constant value. To determine the reason for this difference, the electron density distribution (EDD) is determined from high-pressure single-crystal x-ray diffraction data by the maximum entropy method. The EDD results show that the chemical bond properties in LaB6 play a key role also investigated by single-crystal x-ray diffraction. In observed from ambient pressure to 39.1 GPa. The structural stability of LaB6 under high pressure is this study, no structural or electronic phase transition is