The effects of the number and the location of notches on the formation of flux-closure states in bi-rings with fields applied in the x direction (i.e., along the short axis direction of hi-rings) and y direction (i...The effects of the number and the location of notches on the formation of flux-closure states in bi-rings with fields applied in the x direction (i.e., along the short axis direction of hi-rings) and y direction (i.e., along the long axis direction of bi-rings) are investigated using micromagnetic simulation. For the bi-rings with one notch and the bi-rings with two notches symmetric about y axis, the order of flux-closure state formation in each ring can be controlled. But the flux-closure state forms simultaneously in each ring for the bi-rings with two notches symmetric about x axis. For the bi-rings with two notches that are symmetric neither about x axis nor about y axis, only one ring can form a flux- closure state in the y-direction field and no fluxclosure state can be found in rings in the x-direction field. Therefore, logic states can be defined by controlling the order of flux-closure state formation, which can be utilized in future logic devices.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 50801033)
文摘The effects of the number and the location of notches on the formation of flux-closure states in bi-rings with fields applied in the x direction (i.e., along the short axis direction of hi-rings) and y direction (i.e., along the long axis direction of bi-rings) are investigated using micromagnetic simulation. For the bi-rings with one notch and the bi-rings with two notches symmetric about y axis, the order of flux-closure state formation in each ring can be controlled. But the flux-closure state forms simultaneously in each ring for the bi-rings with two notches symmetric about x axis. For the bi-rings with two notches that are symmetric neither about x axis nor about y axis, only one ring can form a flux- closure state in the y-direction field and no fluxclosure state can be found in rings in the x-direction field. Therefore, logic states can be defined by controlling the order of flux-closure state formation, which can be utilized in future logic devices.