期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于前馈非线性模型预测控制的类车机器人路径跟踪
1
作者 伊力夏提·伊力哈木江 孟宇 +5 位作者 白国星 顾青 王国栋 常鑫睿 黄建秀 郑燕 《工程科学学报》 EI 北大核心 2025年第1期101-112,共12页
类车机器人由于零件标准化程度低,侧偏刚度等轮胎力学参数难以准确获得,存在动力学建模十分困难的问题,因此现有研究工作通常以运动学模型作为类车机器人的控制模型,但由于其运动学模型存在模型失配,导致类车机器人与参考路径之间的误... 类车机器人由于零件标准化程度低,侧偏刚度等轮胎力学参数难以准确获得,存在动力学建模十分困难的问题,因此现有研究工作通常以运动学模型作为类车机器人的控制模型,但由于其运动学模型存在模型失配,导致类车机器人与参考路径之间的误差、类车机器人的前轮转角和前轮转角速度出现剧烈振荡现象.针对前述问题,本文基于非线性模型预测控制(Nonlinear model predictive control,NMPC)的滚动优化原理,引入基于逆运动学模型的前馈转角信息,将前轮转向角作为预测模型的第四维,提出了一种基于前馈非线性模型预测控制(Feedforward NMPC,FNMPC)的类车机器人路径跟踪控制算法.并通过Simulink和CarSim进行了联合仿真,结果表明FNMPC有效减小了模型失配导致的振荡现象,同时具有较高的跟踪精度.其中前馈非线性模型预测控制器的位移误差幅值不超过0.1106 m,航向误差幅值不超过0.1253 rad.在相同工况下,线性模型预测控制、前馈线性模型预测控制、纯跟踪控制和Stanley控制误差发散,而本文提出的FNMPC相比已有NMPC跟踪精度更高,且控制增量绝对累计值相比NMPC控制器减小67.53%.通过线控类车机器人底盘作为实验平台完成的测试结果表明,NMPC系统在进入弯道时出现控制失控现象,在相同工况下,FNMPC系统能够有效完成对参考路径的跟踪,同时将位移误差幅值控制在0.1624 m以内,航向误差幅值控制在0.1138 rad以内. 展开更多
关键词 类车机器人 路径跟踪 前馈信息 模型预测控制 平顺性
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部