采用微粒捕集器可大幅减少船舶柴油机颗粒物的排放量,但在实际应用中仍然受到背压过大等条件的限制。文章利用GT-Power软件建立了柴油机和微粒捕集器(DPF)联合仿真模型,在柴油机试验台架上进行了模型验证试验,模型误差均在5%以内,满足...采用微粒捕集器可大幅减少船舶柴油机颗粒物的排放量,但在实际应用中仍然受到背压过大等条件的限制。文章利用GT-Power软件建立了柴油机和微粒捕集器(DPF)联合仿真模型,在柴油机试验台架上进行了模型验证试验,模型误差均在5%以内,满足仿真优化要求。分析了滤体结构中的微孔直径、壁厚、孔隙率、过滤体长度、通道密度对DPF性能的影响,可得微孔直径对捕集效率影响较大;壁厚和孔隙率增加时,过滤体压降和捕集效率均有所增加;过滤体长度和通道密度增加时,压降降低,初始捕集效率升高。通过正交分析法建立正交表并计算得出最佳DPF结构模型。与原模型相比,改进的模型压降由原来的7.16 k Pa下降至3.92 k Pa,初始捕集效率由原来的93.87%上升到94.09%,为DPF结构优化设计提供了理论依据。展开更多
文摘采用微粒捕集器可大幅减少船舶柴油机颗粒物的排放量,但在实际应用中仍然受到背压过大等条件的限制。文章利用GT-Power软件建立了柴油机和微粒捕集器(DPF)联合仿真模型,在柴油机试验台架上进行了模型验证试验,模型误差均在5%以内,满足仿真优化要求。分析了滤体结构中的微孔直径、壁厚、孔隙率、过滤体长度、通道密度对DPF性能的影响,可得微孔直径对捕集效率影响较大;壁厚和孔隙率增加时,过滤体压降和捕集效率均有所增加;过滤体长度和通道密度增加时,压降降低,初始捕集效率升高。通过正交分析法建立正交表并计算得出最佳DPF结构模型。与原模型相比,改进的模型压降由原来的7.16 k Pa下降至3.92 k Pa,初始捕集效率由原来的93.87%上升到94.09%,为DPF结构优化设计提供了理论依据。