The properties of six kinds of intrinsic point defects in monolayer GeS are systematically investigated using the“transfer to real state”model,based on density functional theory.We find that Ge vacancy is the domina...The properties of six kinds of intrinsic point defects in monolayer GeS are systematically investigated using the“transfer to real state”model,based on density functional theory.We find that Ge vacancy is the dominant intrinsic acceptor defect,due to its shallow acceptor transition energy level and lowest formation energy,which is primarily responsible for the intrinsic p-type conductivity of monolayer GeS,and effectively explains the native p-type conductivity of GeS observed in experiment.The shallow acceptor transition level derives from the local structural distortion induced by Coulomb repulsion between the charged vacancy center and its surrounding anions.Furthermore,with respect to growth conditions,Ge vacancies will be compensated by fewer n-type intrinsic defects under Ge-poor growth conditions.Our results have established the physical origin of the intrinsic p-type conductivity in monolayer GeS,as well as expanding the understanding of defect properties in lowdimensional semiconductor materials.展开更多
Introducing ferromagnetism into non-magnetic systems without the participation of magnetic elements is promising for all-electric spintronic devices[1,2].Many approaches have been pursued,such as non-magnetic defects ...Introducing ferromagnetism into non-magnetic systems without the participation of magnetic elements is promising for all-electric spintronic devices[1,2].Many approaches have been pursued,such as non-magnetic defects induced magnetization in layered materials[3–5]or the inversion symmetry breaking induced magnetization in magic-angle bilayer graphene[6–8],etc.However,these approaches have to tackle with the localization effects or the inevitable precise control of twist angle,which hinders the future application into large-scale spintronic information devices.Theorists also predicted that the spontaneous ferromagnetism could emerge in the quasi-2D crystals[9]like GaSe,but no experimental results have been reported.Here,we report the spontaneous ferromagnetism induced by van Hove singularity[9–13]in non-magnetic groupⅣGe_(1–x)Sn_(x)alloys grown by the molecular beam epitaxy(MBE)technique.Our findings experimentally open up an opportunity to realize spintronics in groupⅣsemiconductors.展开更多
基金Supported by the National Natural Science Foundation of China(Grant Nos.61922077,11804333,11704114,11874347,61121491,61427901,11634003,and U1930402)the National Key Research and Development Program of China(Grant Nos.2016YFB0700700 and 2018YFB2200100)+1 种基金the Science Challenge Project(Grant No.TZ2016003)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2017154).
文摘The properties of six kinds of intrinsic point defects in monolayer GeS are systematically investigated using the“transfer to real state”model,based on density functional theory.We find that Ge vacancy is the dominant intrinsic acceptor defect,due to its shallow acceptor transition energy level and lowest formation energy,which is primarily responsible for the intrinsic p-type conductivity of monolayer GeS,and effectively explains the native p-type conductivity of GeS observed in experiment.The shallow acceptor transition level derives from the local structural distortion induced by Coulomb repulsion between the charged vacancy center and its surrounding anions.Furthermore,with respect to growth conditions,Ge vacancies will be compensated by fewer n-type intrinsic defects under Ge-poor growth conditions.Our results have established the physical origin of the intrinsic p-type conductivity in monolayer GeS,as well as expanding the understanding of defect properties in lowdimensional semiconductor materials.
基金the Key-Area Research and Development Program of Guangdong Province(2020B0303060001,and 2018B030327001)the National Natural Science Foundation of China(61874109,61922077,12004158,and 12074162)+1 种基金the National Key Research and Development Program of China(2018YFB2200100,and 2020YFA0309300)Guangdong Provincial Key Laboratory(2019B121203002)。
文摘Introducing ferromagnetism into non-magnetic systems without the participation of magnetic elements is promising for all-electric spintronic devices[1,2].Many approaches have been pursued,such as non-magnetic defects induced magnetization in layered materials[3–5]or the inversion symmetry breaking induced magnetization in magic-angle bilayer graphene[6–8],etc.However,these approaches have to tackle with the localization effects or the inevitable precise control of twist angle,which hinders the future application into large-scale spintronic information devices.Theorists also predicted that the spontaneous ferromagnetism could emerge in the quasi-2D crystals[9]like GaSe,but no experimental results have been reported.Here,we report the spontaneous ferromagnetism induced by van Hove singularity[9–13]in non-magnetic groupⅣGe_(1–x)Sn_(x)alloys grown by the molecular beam epitaxy(MBE)technique.Our findings experimentally open up an opportunity to realize spintronics in groupⅣsemiconductors.