期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A^(2)former模型在时间序列预测中的应用研究
1
作者 胡倩伟 王秀青 +2 位作者 安阳 张诺飞 王广超 《人工智能科学与工程》 CAS 北大核心 2024年第1期41-50,共10页
时间序列预测在金融、医疗、交通和气象等领域发挥着重要作用。在长时间序列预测中,迫切需要提高预测的精度,解决内存不足等问题。近年来,Transformer模型在自然语言处理领域得以成功应用的同时,在预测研究领域也引起了学者们的广泛关注... 时间序列预测在金融、医疗、交通和气象等领域发挥着重要作用。在长时间序列预测中,迫切需要提高预测的精度,解决内存不足等问题。近年来,Transformer模型在自然语言处理领域得以成功应用的同时,在预测研究领域也引起了学者们的广泛关注,Transformer变体Informer模型的研究在时间序列预测中取得了较大进展。本研究以Informer框架为基础,与加性注意力机制相结合,提出了A^(2)former模型。利用A^(2)former模型在ETT,WTH,ECL和PM2.5数据集上进行了长时间序列预测的实验,实验结果表明所提模型在长时间序列预测中表现出比基线方法(如Informer模型和LSTMa模型)更好的性能。A^(2)former模型不仅将计算时间复杂度降低到线性,而且可以实现更有效的序列建模。本研究的工作为时间序列预测提供了有益参考。 展开更多
关键词 时间序列预测 加性注意力机制 Transformer模型 Informer模型 深度学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部