采用两步干混-球磨方法制备了石墨烯掺杂改性的锂离子电池LiFePO_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2复合正极材料,实现LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料的高容量和高安全性。借助X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X...采用两步干混-球磨方法制备了石墨烯掺杂改性的锂离子电池LiFePO_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2复合正极材料,实现LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料的高容量和高安全性。借助X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱(XPS)以及电化学测试等表征手段对材料的晶体结构、微观形貌和电化学性能进行了较系统的研究。结果表明,石墨烯的存在实现了Li Fe PO4材料在LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料表面的完全包覆,形成致密的包覆层,进一步抑制LiNi_(0.8)Co_(0.15)Al_(0.05)O_2与电解液之间的副反应,提高活性材料利用率和循环性能。三者之间构成导电网络,加快电子渗透和传输,提高倍率性能。Li Fe PO4质量分数为20%的Li Fe PO4-Graphene/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2样品具有最佳的容量性能和长循环性能,0.1C时放电容量达到202.5 m Ah·g^(-1),3C时放电容量仍然可保持在160.5 m Ah·g^(-1)。50℃在2.8~4.3 V,0.5C下循环100次后,容量保持率为91.9%,优于LiNi_(0.8)Co_(0.15)Al_(0.05)O_2和LiFePO_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2样品的72.9%和82.0%。展开更多
以水杨酸为模板剂和还原剂,采用水热法制备得到了一种MoO3纳米带/RGO复合材料。利用XRD、SEM、TEM、拉曼光谱、恒流充放电、交流阻抗等手段对样品的结构、形貌以及电化学性能进行表征。测试结果表明,MoO3纳米带/RGO复合材料作为锂离子...以水杨酸为模板剂和还原剂,采用水热法制备得到了一种MoO3纳米带/RGO复合材料。利用XRD、SEM、TEM、拉曼光谱、恒流充放电、交流阻抗等手段对样品的结构、形貌以及电化学性能进行表征。测试结果表明,MoO3纳米带/RGO复合材料作为锂离子电池负极材料,在50 m A·g-1的电流密度下可逆比容量为1 000 m Ah·g-1,循环50次后比容量还保持在950 m Ah·g-1,相比于MoO3纳米带其容量保持能力和循环性能得到了显著改善。展开更多
通过硝酸锰和乙醇的水热反应在三聚氰胺泡棉(MF)上生成三氧化二锰颗粒,氮气下高温处理后形成锰氧化物负载碳氮三维网络结构的复合物。碳氮网络结构提高了充放电过程中材料结构的稳定性及导电性,且烧结过程中产生的孔道结构有利于锂离子...通过硝酸锰和乙醇的水热反应在三聚氰胺泡棉(MF)上生成三氧化二锰颗粒,氮气下高温处理后形成锰氧化物负载碳氮三维网络结构的复合物。碳氮网络结构提高了充放电过程中材料结构的稳定性及导电性,且烧结过程中产生的孔道结构有利于锂离子传输,使得该复合材料作为负极在锂离子电池中表现出优异的充放电性能和循环稳定性。材料的比容量和循环稳定性大大提高,经500℃处理后的MnO/CNnws-500材料在160次循环后仍然保留590 m Ah·g^(-1)的比容量,达到氧化亚锰理论容量755 m Ah·g^(-1)的78%。展开更多
A nanocomposite composed of Ni modified carbon nitride was synthesized and used in the hydro- genation of p-chloronitrobenzene. H/D exchange demonstrated that the hydrogen chemisorbed on the surface of this nanocompos...A nanocomposite composed of Ni modified carbon nitride was synthesized and used in the hydro- genation of p-chloronitrobenzene. H/D exchange demonstrated that the hydrogen chemisorbed on the surface of this nanocomposite catalyst had a hydrogen atom density of 0.65/nm2. It was active for hydrogenation but its activity was inferior to the hydrogen adsorbed on a Ni/Al2O3 catalyst. Catalytic tests showed that this catalyst possessed a lower activity than Ni/AhO3 but the selectivity towards p-chloroaniline was above 99.9%. Even at high conversion, the catalyst maintained high selectivity, which was attributed to the unique surface property of the catalyst and the absence of a site for the adsorption ofp-chloronitrobenzene, which prevents the C-Cl bond from breaking.展开更多
A series of hexadecylphosphate acid(HDPA) terminated mixed-oxide nanoparticles have been investigated to catalyze the oxidation of toluene exclusive to benzaldehyde under mild conditions in an emulsion of toluene/wate...A series of hexadecylphosphate acid(HDPA) terminated mixed-oxide nanoparticles have been investigated to catalyze the oxidation of toluene exclusive to benzaldehyde under mild conditions in an emulsion of toluene/water with the catalysts as stabilizers. With the HDPA-Fe2 O3/Al2 O3 as the basic catalyst, a series of transition metals, such as Mn, Co, Ni, Cu, Cr, Mo, V, and Ti, was respectively doped to the basic catalyst to modify the performance of the catalytic system, in expectation of influencing the mobility of the lattice oxygen species in the oxide catalysts. Under normally working conditions of the catalytic system, the nanoparticles of catalysts located themselves at the interface between the oil and water phases, constituting the Pickering emulsion. Both the doped iron oxide and its surface adsorbed hexadecylphosphate molecules were essential to the catalytic system for excellent performances with high toluene conversions as well as the exclusive selectivity to benzaldehyde. Under optimal conditions, ~83% of toluene conversion and >99% selectivity to benzaldehyde were obtained, using molecular oxygen as oxidant and HDPA-(Fe2 O3-Ni O)/Al2 O3 as the catalyst. This process is green and low cost to produce high quality benzaldehyde from O2 oxidation of toluene.展开更多
A nanocomposite catalyst with a nonstoichiometric titanium oxide loaded on a special nanotubular alumina(γ‐Al2O3‐nt)was developed and used to reduce cinnamaldehyde to cinnamyl alcohol with sacrificial isopropanol,i...A nanocomposite catalyst with a nonstoichiometric titanium oxide loaded on a special nanotubular alumina(γ‐Al2O3‐nt)was developed and used to reduce cinnamaldehyde to cinnamyl alcohol with sacrificial isopropanol,i.e.,a Meerwein‐Ponndorf‐Verley type reaction.The deposition process produced a highly disperse layer of titanium oxide on the surface of aγ‐Al2O3‐nt support.After a reduction treatment,the as‐prepared TiOx/γ‐Al2O3‐nt was a highly efficient catalyst for the hydrogen transfer reaction between isopropanol and cinnamaldehyde.Selectivity for cinnamic alcohol was higher than99%and the conversion of cinnamaldehyde was higher than95%.The regular morphology of theγ‐Al2O3‐nt support with homogeneous surface sites and the uniformly dispersed titanium oxide featured a high concentration surface Ti(III)species.These factors contributed to the high performance of the TiOx/γ‐Al2O3‐nt catalyst.展开更多
The completely selective oxidation of toluene to benzaldehyde with dioxygen,without the need touse H_(2)O_(2),halogens,or any radical initiators,is a reaction long desired but never previously successful.Here,we demon...The completely selective oxidation of toluene to benzaldehyde with dioxygen,without the need touse H_(2)O_(2),halogens,or any radical initiators,is a reaction long desired but never previously successful.Here,we demonstrate the enzyme‐like mechanism of the reaction over hexadecylphosphateacid(HDPA)‐bonded nano‐oxides,which appear to interact with toluene through specific recognition.The active sites of the catalyst are related to the ability of HDPA to change its bonding to theoxides between monodentate and bidentate during the reaction cycle.This greatly enhances themobility of the crystal oxygen or the reactivity of the catalyst,specifically in toluene transformations.The catalytic cycle of the catalyst is similar to that of methane monooxygenase.In thepresence of catalyst and through O_(2)oxidation,the conversion of toluene to benzaldehyde is initiatedat 70°C.We envision that this novel mechanism reveals alternatives for an attractive route to designhigh‐performance catalysts with bioinspired structures.展开更多
文摘采用两步干混-球磨方法制备了石墨烯掺杂改性的锂离子电池LiFePO_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2复合正极材料,实现LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料的高容量和高安全性。借助X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱(XPS)以及电化学测试等表征手段对材料的晶体结构、微观形貌和电化学性能进行了较系统的研究。结果表明,石墨烯的存在实现了Li Fe PO4材料在LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料表面的完全包覆,形成致密的包覆层,进一步抑制LiNi_(0.8)Co_(0.15)Al_(0.05)O_2与电解液之间的副反应,提高活性材料利用率和循环性能。三者之间构成导电网络,加快电子渗透和传输,提高倍率性能。Li Fe PO4质量分数为20%的Li Fe PO4-Graphene/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2样品具有最佳的容量性能和长循环性能,0.1C时放电容量达到202.5 m Ah·g^(-1),3C时放电容量仍然可保持在160.5 m Ah·g^(-1)。50℃在2.8~4.3 V,0.5C下循环100次后,容量保持率为91.9%,优于LiNi_(0.8)Co_(0.15)Al_(0.05)O_2和LiFePO_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2样品的72.9%和82.0%。
基金supported by the National Natural Science Foundation of China (21273107, 21103087)the Fundamental Research Funds for the Central Universities (1107020524)the Specialized Research Fund for the Doctoral Program of Higher Education (20100091120035)~~
文摘以水杨酸为模板剂和还原剂,采用水热法制备得到了一种MoO3纳米带/RGO复合材料。利用XRD、SEM、TEM、拉曼光谱、恒流充放电、交流阻抗等手段对样品的结构、形貌以及电化学性能进行表征。测试结果表明,MoO3纳米带/RGO复合材料作为锂离子电池负极材料,在50 m A·g-1的电流密度下可逆比容量为1 000 m Ah·g-1,循环50次后比容量还保持在950 m Ah·g-1,相比于MoO3纳米带其容量保持能力和循环性能得到了显著改善。
基金supported by the National Basic Research Program of China(973 Program,2013CB934800)the National Natural Science Foundation of China(21222302,20903056,21073083)+2 种基金the National Natural Science Foundation of China-Royal Society(NSFC-RS)Joint Project(21111130201)the Program for New Century Excellent Talents in University(NCET-10-0483)the Fundamental Research Funds for the Central Universities(1124020512)~~
文摘通过硝酸锰和乙醇的水热反应在三聚氰胺泡棉(MF)上生成三氧化二锰颗粒,氮气下高温处理后形成锰氧化物负载碳氮三维网络结构的复合物。碳氮网络结构提高了充放电过程中材料结构的稳定性及导电性,且烧结过程中产生的孔道结构有利于锂离子传输,使得该复合材料作为负极在锂离子电池中表现出优异的充放电性能和循环稳定性。材料的比容量和循环稳定性大大提高,经500℃处理后的MnO/CNnws-500材料在160次循环后仍然保留590 m Ah·g^(-1)的比容量,达到氧化亚锰理论容量755 m Ah·g^(-1)的78%。
文摘A nanocomposite composed of Ni modified carbon nitride was synthesized and used in the hydro- genation of p-chloronitrobenzene. H/D exchange demonstrated that the hydrogen chemisorbed on the surface of this nanocomposite catalyst had a hydrogen atom density of 0.65/nm2. It was active for hydrogenation but its activity was inferior to the hydrogen adsorbed on a Ni/Al2O3 catalyst. Catalytic tests showed that this catalyst possessed a lower activity than Ni/AhO3 but the selectivity towards p-chloroaniline was above 99.9%. Even at high conversion, the catalyst maintained high selectivity, which was attributed to the unique surface property of the catalyst and the absence of a site for the adsorption ofp-chloronitrobenzene, which prevents the C-Cl bond from breaking.
基金supported by the National Natural Science Foundation of China(91434101,91745108)the Ministry of Science and Technology of the People’s Republic of China(2017YFB0702900)~~
文摘A series of hexadecylphosphate acid(HDPA) terminated mixed-oxide nanoparticles have been investigated to catalyze the oxidation of toluene exclusive to benzaldehyde under mild conditions in an emulsion of toluene/water with the catalysts as stabilizers. With the HDPA-Fe2 O3/Al2 O3 as the basic catalyst, a series of transition metals, such as Mn, Co, Ni, Cu, Cr, Mo, V, and Ti, was respectively doped to the basic catalyst to modify the performance of the catalytic system, in expectation of influencing the mobility of the lattice oxygen species in the oxide catalysts. Under normally working conditions of the catalytic system, the nanoparticles of catalysts located themselves at the interface between the oil and water phases, constituting the Pickering emulsion. Both the doped iron oxide and its surface adsorbed hexadecylphosphate molecules were essential to the catalytic system for excellent performances with high toluene conversions as well as the exclusive selectivity to benzaldehyde. Under optimal conditions, ~83% of toluene conversion and >99% selectivity to benzaldehyde were obtained, using molecular oxygen as oxidant and HDPA-(Fe2 O3-Ni O)/Al2 O3 as the catalyst. This process is green and low cost to produce high quality benzaldehyde from O2 oxidation of toluene.
基金supported by the National Natural Science Foundation of China (91434101)the National Key R&D Plan (2017YFB0702800)~~
文摘A nanocomposite catalyst with a nonstoichiometric titanium oxide loaded on a special nanotubular alumina(γ‐Al2O3‐nt)was developed and used to reduce cinnamaldehyde to cinnamyl alcohol with sacrificial isopropanol,i.e.,a Meerwein‐Ponndorf‐Verley type reaction.The deposition process produced a highly disperse layer of titanium oxide on the surface of aγ‐Al2O3‐nt support.After a reduction treatment,the as‐prepared TiOx/γ‐Al2O3‐nt was a highly efficient catalyst for the hydrogen transfer reaction between isopropanol and cinnamaldehyde.Selectivity for cinnamic alcohol was higher than99%and the conversion of cinnamaldehyde was higher than95%.The regular morphology of theγ‐Al2O3‐nt support with homogeneous surface sites and the uniformly dispersed titanium oxide featured a high concentration surface Ti(III)species.These factors contributed to the high performance of the TiOx/γ‐Al2O3‐nt catalyst.
文摘The completely selective oxidation of toluene to benzaldehyde with dioxygen,without the need touse H_(2)O_(2),halogens,or any radical initiators,is a reaction long desired but never previously successful.Here,we demonstrate the enzyme‐like mechanism of the reaction over hexadecylphosphateacid(HDPA)‐bonded nano‐oxides,which appear to interact with toluene through specific recognition.The active sites of the catalyst are related to the ability of HDPA to change its bonding to theoxides between monodentate and bidentate during the reaction cycle.This greatly enhances themobility of the crystal oxygen or the reactivity of the catalyst,specifically in toluene transformations.The catalytic cycle of the catalyst is similar to that of methane monooxygenase.In thepresence of catalyst and through O_(2)oxidation,the conversion of toluene to benzaldehyde is initiatedat 70°C.We envision that this novel mechanism reveals alternatives for an attractive route to designhigh‐performance catalysts with bioinspired structures.