期刊导航
期刊开放获取
重庆大学
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进FeatDepth的足球运动场景无监督单目图像深度预测
1
作者
傅荟璇
徐权文
王宇超
《实验技术与管理》
CAS
北大核心
2024年第10期74-84,共11页
为了在降低成本的同时提高图像深度信息预测的精确度,并将深度估计应用于足球运动场景,提出一种基于改进FeatDepth的足球运动场景无监督单目图像深度预测方法。首先,对原FeatDepth引入注意力机制,使模型更加关注有效的特征信息;其次,将F...
为了在降低成本的同时提高图像深度信息预测的精确度,并将深度估计应用于足球运动场景,提出一种基于改进FeatDepth的足球运动场景无监督单目图像深度预测方法。首先,对原FeatDepth引入注意力机制,使模型更加关注有效的特征信息;其次,将FeatDepth中的PoseNet网络和DepthNet网络分别嵌入GAM全局注意力机制模块,为网络添加额外的上下文信息,在基本不增加计算成本的情况下提升FeatDepth模型深度预测性能;再次,为在低纹理区域和细节上获得更好的深度预测效果,由单视图重构损失与交叉视图重构损失组合而成最终的损失函数。选取KITTI数据集中Person场景较多的部分进行数据集制作并进行仿真实验,结果表明,改进后的FeatDepth模型不仅在精确度上有所提升,且在低纹理区域及细节处拥有更好的深度预测效果。最后,对比模型在足球场景下的推理效果后得出,改进后的模型在低纹理区域(足球、球门等)及细节处(肢体等)有更好的深度预测效果,实现了将基于无监督的单目深度估计模型应用于足球运动场景的目的。
展开更多
关键词
足球运动场景
无监督单目深度估计
FeatDepth
注意力机制
GAM
图像重构
下载PDF
职称材料
题名
基于改进FeatDepth的足球运动场景无监督单目图像深度预测
1
作者
傅荟璇
徐权文
王宇超
机构
哈尔滨工程大学智能科学与工程学院
出处
《实验技术与管理》
CAS
北大核心
2024年第10期74-84,共11页
基金
国家自然科学基金面上项目(52271313)
中央高校基金项目(3072024GH0405)。
文摘
为了在降低成本的同时提高图像深度信息预测的精确度,并将深度估计应用于足球运动场景,提出一种基于改进FeatDepth的足球运动场景无监督单目图像深度预测方法。首先,对原FeatDepth引入注意力机制,使模型更加关注有效的特征信息;其次,将FeatDepth中的PoseNet网络和DepthNet网络分别嵌入GAM全局注意力机制模块,为网络添加额外的上下文信息,在基本不增加计算成本的情况下提升FeatDepth模型深度预测性能;再次,为在低纹理区域和细节上获得更好的深度预测效果,由单视图重构损失与交叉视图重构损失组合而成最终的损失函数。选取KITTI数据集中Person场景较多的部分进行数据集制作并进行仿真实验,结果表明,改进后的FeatDepth模型不仅在精确度上有所提升,且在低纹理区域及细节处拥有更好的深度预测效果。最后,对比模型在足球场景下的推理效果后得出,改进后的模型在低纹理区域(足球、球门等)及细节处(肢体等)有更好的深度预测效果,实现了将基于无监督的单目深度估计模型应用于足球运动场景的目的。
关键词
足球运动场景
无监督单目深度估计
FeatDepth
注意力机制
GAM
图像重构
Keywords
football sports scenes
unsupervised monocular depth estimation
FeatDepth
attention mechanism
GAM
image reconstruction
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进FeatDepth的足球运动场景无监督单目图像深度预测
傅荟璇
徐权文
王宇超
《实验技术与管理》
CAS
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部