Surface plasmon polariton (SPP) nanolaser, which can achieve an all-optical circuit, is a major research topic in the field of micro light source. In this study, we examine a novel SPP graphene nanolaser in an optoe...Surface plasmon polariton (SPP) nanolaser, which can achieve an all-optical circuit, is a major research topic in the field of micro light source. In this study, we examine a novel SPP graphene nanolaser in an optoelectronic integration field. The proposed nanolaser consists of metallic silver, two-dimensional (2D) graphene and high refractive index semiconductor of indium gallium arsenide phosphorus. Compared with other metals, Ag can reduce the threshold and propagation loss. The SPP field, excited by coupling Ag and InGaAsE can be enhanced by the 2D material of graphene. In the proposed nanolaser, the maximum value of propagation loss is approximately 0.055 dB/~tm, and the normalized mode area is con- stantly less than 0.05, and the best threshold can achieve 3380 cm l simultaneously. Meanwhile, the proposed nanolaser can be fabricated by conventional materials and work in optical communication (1550 nm), which can be easily achieved with current nanotechnology. It is also an important method that will be used to overcome the challenges of high speed, miniaturization, and integration in optoelectronic integrated technology.展开更多
基金Project supported by the Guangxi Natural Science Foundation,China(Grant No.2017GXNSFAA198261)the National Natural Science Foundation of China(Grant No.61762018)+3 种基金the Guangxi Youth Talent Program,China(Grant No.F-KA16016)the Guangxi Normal University Key Program,China(Grant No.2015ZD03)the Innovation Project of Guangxi Graduate Education,China(Grant Nos.XYCSZ2018082,XJGY201807,and XJGY201811)the Guangxi Key Laboratory of Automatic Detecting Technology and Instruments,China(Grant No.YQ16206)
文摘Surface plasmon polariton (SPP) nanolaser, which can achieve an all-optical circuit, is a major research topic in the field of micro light source. In this study, we examine a novel SPP graphene nanolaser in an optoelectronic integration field. The proposed nanolaser consists of metallic silver, two-dimensional (2D) graphene and high refractive index semiconductor of indium gallium arsenide phosphorus. Compared with other metals, Ag can reduce the threshold and propagation loss. The SPP field, excited by coupling Ag and InGaAsE can be enhanced by the 2D material of graphene. In the proposed nanolaser, the maximum value of propagation loss is approximately 0.055 dB/~tm, and the normalized mode area is con- stantly less than 0.05, and the best threshold can achieve 3380 cm l simultaneously. Meanwhile, the proposed nanolaser can be fabricated by conventional materials and work in optical communication (1550 nm), which can be easily achieved with current nanotechnology. It is also an important method that will be used to overcome the challenges of high speed, miniaturization, and integration in optoelectronic integrated technology.