A full-band direct-conversion receiver using a microwave photonic in-phase and quadrature (I/Q) mixer is proposed and experimentally evaluated in terms of radio frequency (RF) range, port isolation, phase imbalanc...A full-band direct-conversion receiver using a microwave photonic in-phase and quadrature (I/Q) mixer is proposed and experimentally evaluated in terms of radio frequency (RF) range, port isolation, phase imbalance, conversion gain, noise figure, spurious-free dynamic range, and error vector magnitude. The proposed microwave photonic I/Q mixer shows significant advantages in locM oscillator leakage and I/Q phase imbalance over entire RF bands, which are recognized as major drawbacks of conventional direct-conversion receivers.展开更多
基金The National 863 Program(No.2011AA010306)National 973 Program(No.2012CB315705)+2 种基金NSFC Program(Nos.61271042,61107058,61120106001)the Cooperation Project between Province and Ministries(No.2011A090200025)the Fundamental Research Funds for the Central Universities(No.2013RC1203)
基金supported in part by the National 863Program of China(No.2015AA016903)the National Natural Science Foundation of China(No.61431003,61601049,and 61401411)+1 种基金the Innovation Foundation of China Electronics Technology Group Corporation(CETC)the Innovation Foundation of Key Laboratory of Aerospace Information Applications at CETC
文摘A full-band direct-conversion receiver using a microwave photonic in-phase and quadrature (I/Q) mixer is proposed and experimentally evaluated in terms of radio frequency (RF) range, port isolation, phase imbalance, conversion gain, noise figure, spurious-free dynamic range, and error vector magnitude. The proposed microwave photonic I/Q mixer shows significant advantages in locM oscillator leakage and I/Q phase imbalance over entire RF bands, which are recognized as major drawbacks of conventional direct-conversion receivers.