以深度学习为代表的数据分析应用越来越多依赖分布式文件系统存储管理大规模数据集.为了增强数据访问的兼容性,现有分布式文件存储系统通常需提供标准POSIX接口,以支持深度学习等应用的无缝对接.然而,以内核模块形态开发提供POSIX接口...以深度学习为代表的数据分析应用越来越多依赖分布式文件系统存储管理大规模数据集.为了增强数据访问的兼容性,现有分布式文件存储系统通常需提供标准POSIX接口,以支持深度学习等应用的无缝对接.然而,以内核模块形态开发提供POSIX接口的文件系统非常复杂耗时.近年来,用户态文件系统(Filesystem in Userspace,FUSE)框架大幅简化了文件系统的开发工作,已被Alluxio和Ceph等诸多知名分布式文件系统使用.目前常用的用户态FUSE库libfuse仅提供C语言编程接口,但现有大数据分布式文件系统基本都是基于Java语言开发的(例如HDFS和Alluxio等),为了使基于Java语言开发的分布式文件系统可以对接C语言开发的FUSE库,需采用跨语言FUSE框架作为中介.跨语言FUSE框架利用跨编程语言的函数回调机制,使操作系统FUSE库的C语言函数可以跨语言的调用分布式文件系统提供的Java语言编程接口,从而为大数据分布式文件系统提供标准POSIX接口的访问能力.但在数据密集型应用中,现有跨语言FUSE框架的执行效率低,导致数据密集型作业(深度学习、大数据分析等)中数据I/O耗时占据了显著的性能开销,成为新的潜在性能瓶颈.针对此问题,本文首先评估分析了重要且广为使用的跨语言FUSE框架JNR-FUSE的性能,发现并定位其在高并发和小文件场景下存在的性能瓶颈;接着从多方面剖析性能瓶颈根因,进而总结出高效跨语言FUSE框架的性能优化方向,并面向Java语言设计实现了跨语言FUSE框架JNI-FUSE.JNI-FUSE利用延迟分离和元信息缓存等优化技术降低跨语言函数回调开销,从而提升跨语言FUSE框架的性能.实验结果表明,对比当前性能最好的Java FUSE框架JNR-FUSE,本文提出的JNI-FUSE带来了1.15~6.04倍的FUSE框架性能提升和1.90~2.71倍的文件系统端到端性能提升,并为上层深度学习训练任务带来了1.06~1.73倍的训练加速.本文设计提出的JNI-FUSE(Java Native Interface-Filesystem in User SpacE)因性能优势,已被知名开源分布式文件系统Alluxio官方接受集成.展开更多
利用移动数据收集器(mobile data collector,简称MDC)进行传感器网络中感知数据的收集,可以有效地减少传感器将数据发送到静止基站的传输跳数,节约网络的能量,延长网络寿命.此外,MDC通过循环收集传感器数据或承担数据转发的功能,避免节...利用移动数据收集器(mobile data collector,简称MDC)进行传感器网络中感知数据的收集,可以有效地减少传感器将数据发送到静止基站的传输跳数,节约网络的能量,延长网络寿命.此外,MDC通过循环收集传感器数据或承担数据转发的功能,避免节点间由于多跳传输引起的能量空洞(energy hole)以及节点失效造成的传输链路中断等问题.MDC的移动性也为无线传感器网络的研究带来新的挑战.研究基于移动协助数据收集的无线传感器网络结构,分类总结了近年来提出的一些典型的基于MDC的算法和协议,着重讨论了MDC在网络能量、延迟、路由和传输等方面带来的性能变化.最后,进行了各种算法的比较性总结,针对传感器网络中MDC的研究提出了亟待解决的问题,并展望了其未来的发展方向.展开更多
文摘以深度学习为代表的数据分析应用越来越多依赖分布式文件系统存储管理大规模数据集.为了增强数据访问的兼容性,现有分布式文件存储系统通常需提供标准POSIX接口,以支持深度学习等应用的无缝对接.然而,以内核模块形态开发提供POSIX接口的文件系统非常复杂耗时.近年来,用户态文件系统(Filesystem in Userspace,FUSE)框架大幅简化了文件系统的开发工作,已被Alluxio和Ceph等诸多知名分布式文件系统使用.目前常用的用户态FUSE库libfuse仅提供C语言编程接口,但现有大数据分布式文件系统基本都是基于Java语言开发的(例如HDFS和Alluxio等),为了使基于Java语言开发的分布式文件系统可以对接C语言开发的FUSE库,需采用跨语言FUSE框架作为中介.跨语言FUSE框架利用跨编程语言的函数回调机制,使操作系统FUSE库的C语言函数可以跨语言的调用分布式文件系统提供的Java语言编程接口,从而为大数据分布式文件系统提供标准POSIX接口的访问能力.但在数据密集型应用中,现有跨语言FUSE框架的执行效率低,导致数据密集型作业(深度学习、大数据分析等)中数据I/O耗时占据了显著的性能开销,成为新的潜在性能瓶颈.针对此问题,本文首先评估分析了重要且广为使用的跨语言FUSE框架JNR-FUSE的性能,发现并定位其在高并发和小文件场景下存在的性能瓶颈;接着从多方面剖析性能瓶颈根因,进而总结出高效跨语言FUSE框架的性能优化方向,并面向Java语言设计实现了跨语言FUSE框架JNI-FUSE.JNI-FUSE利用延迟分离和元信息缓存等优化技术降低跨语言函数回调开销,从而提升跨语言FUSE框架的性能.实验结果表明,对比当前性能最好的Java FUSE框架JNR-FUSE,本文提出的JNI-FUSE带来了1.15~6.04倍的FUSE框架性能提升和1.90~2.71倍的文件系统端到端性能提升,并为上层深度学习训练任务带来了1.06~1.73倍的训练加速.本文设计提出的JNI-FUSE(Java Native Interface-Filesystem in User SpacE)因性能优势,已被知名开源分布式文件系统Alluxio官方接受集成.
文摘利用移动数据收集器(mobile data collector,简称MDC)进行传感器网络中感知数据的收集,可以有效地减少传感器将数据发送到静止基站的传输跳数,节约网络的能量,延长网络寿命.此外,MDC通过循环收集传感器数据或承担数据转发的功能,避免节点间由于多跳传输引起的能量空洞(energy hole)以及节点失效造成的传输链路中断等问题.MDC的移动性也为无线传感器网络的研究带来新的挑战.研究基于移动协助数据收集的无线传感器网络结构,分类总结了近年来提出的一些典型的基于MDC的算法和协议,着重讨论了MDC在网络能量、延迟、路由和传输等方面带来的性能变化.最后,进行了各种算法的比较性总结,针对传感器网络中MDC的研究提出了亟待解决的问题,并展望了其未来的发展方向.