Nondipole effects are ubiquitous and crucial in light-matter interaction.However,they are too weak to be directly observed.In strong-field physics,motion of electrons is mainly confined in transverse plane of light fi...Nondipole effects are ubiquitous and crucial in light-matter interaction.However,they are too weak to be directly observed.In strong-field physics,motion of electrons is mainly confined in transverse plane of light fields,which suppresses the significance of nondipole effects.Here,we present a theoretical study on enhancing and controlling the nondipole effect by using the synthesized two perpendicularly propagating laser fields.We calculate the three-dimensional photoelectron momentum distributions of strong-field tunneling ionization of hydrogen atoms using the classical trajectory Monte Carlo model and show that the nondipole effects are noticeably enhanced in such laser fields due to their remarkable influences on the sub-cycle photoelectron dynamics.In particular,we reveal that the magnitudes of the magnetic and electric components of nondipole effects can be separately controlled by modulating the ellipticity and amplitude of driving laser fields.This novel scenario holds promising applications for future studies with ultrafast structured light fields.展开更多
基金the Key R&D Program of China(Grant No.2022YFA1604301)the National Natural Science Foundation of China(Grant Nos.92050201,92250306,and 12204018)。
文摘Nondipole effects are ubiquitous and crucial in light-matter interaction.However,they are too weak to be directly observed.In strong-field physics,motion of electrons is mainly confined in transverse plane of light fields,which suppresses the significance of nondipole effects.Here,we present a theoretical study on enhancing and controlling the nondipole effect by using the synthesized two perpendicularly propagating laser fields.We calculate the three-dimensional photoelectron momentum distributions of strong-field tunneling ionization of hydrogen atoms using the classical trajectory Monte Carlo model and show that the nondipole effects are noticeably enhanced in such laser fields due to their remarkable influences on the sub-cycle photoelectron dynamics.In particular,we reveal that the magnitudes of the magnetic and electric components of nondipole effects can be separately controlled by modulating the ellipticity and amplitude of driving laser fields.This novel scenario holds promising applications for future studies with ultrafast structured light fields.
基金supported by the National Key R&D Program(2022YFA1604301)the National Natural Science Foundation of China(92050201,92250306,11975026,12125402,and 12147148)+3 种基金the Key R&D Program of Guangzhou Province(2018B030329001)the Beijing Natural Science Foundation(Z190005)the China Postdoctoral Science Foundation(2020M680186)the Innovation Program for Quantum Science and Technology(2021ZD0301500)。