In order to investigate the boundedness or compactness of composition operator from the logarithmic Bloch-type space to the Bergman space on the unit polydisc, the classic Bergman norm is firstly changed into another ...In order to investigate the boundedness or compactness of composition operator from the logarithmic Bloch-type space to the Bergman space on the unit polydisc, the classic Bergman norm is firstly changed into another equivalent norm. Then according to some common inequalities, the properties of logarithmic Bloch-type space and the absolute continuity of the general integral, the conditions which the symbol map must meet when the composition operator is bounded or compact are obtained after a series of calculations, and the boundedness and compactness are proved to be equivalent.展开更多
基金Supported by National Natural Science Foundation of China (No.10971153)
文摘In order to investigate the boundedness or compactness of composition operator from the logarithmic Bloch-type space to the Bergman space on the unit polydisc, the classic Bergman norm is firstly changed into another equivalent norm. Then according to some common inequalities, the properties of logarithmic Bloch-type space and the absolute continuity of the general integral, the conditions which the symbol map must meet when the composition operator is bounded or compact are obtained after a series of calculations, and the boundedness and compactness are proved to be equivalent.