期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于CEEMDAN-GRU的主泵电机绕组温度预测 被引量:1
1
作者 朱一虎 夏虹 +3 位作者 杨波 朱少民 张汲宇 王志超 《应用科技》 CAS 2023年第4期14-20,共7页
针对核电站主泵电机绕组温度的预测问题,提出了基于自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和门控循环单元(gated recurrent unit,GRU)的预测模型。首先使用CEEM... 针对核电站主泵电机绕组温度的预测问题,提出了基于自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和门控循环单元(gated recurrent unit,GRU)的预测模型。首先使用CEEMDAN对采集到的绕组温度序列进行分解,经过分量重构得到其高、低频分量和趋势项,在此基础上分别构建各分量的GRU预测模型,将各分量的预测结果叠加集成得到绕组温度的整体预测值。仿真结果表明,与传统的循环神经网络(recurrent neural network,RNN)、长短期记忆(long short-term memory,LSTM)模型和GRU模型相比,本文提出的预测模型在多元评价指标方面均优于其他模型,具有更高的预测精度,验证了该模型的可行性。 展开更多
关键词 主泵 电机 绕组温度 时间序列 状态预测 自适应噪声完备集合经验模态分解 深度学习 门控循环单元
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部