Li[NixCoyMn2]O2(0.6≤x≤0.8) cathode materials with a typical hexagonal α-NaFeO2 structure were prepared utilizing a co-precipitation method.It is found that the ratio of peak intensities of(003) to(104) observ...Li[NixCoyMn2]O2(0.6≤x≤0.8) cathode materials with a typical hexagonal α-NaFeO2 structure were prepared utilizing a co-precipitation method.It is found that the ratio of peak intensities of(003) to(104) observed from X-ray diffraction(XRD)increases with decreasing the Ni content or increasing the Co content.The scanning electron microscopy(SEM) images reveal that the small primary particles are agglomerated to form the secondary ones.As the Mn content increases,the primary and secondary particles become larger and the resulted particle size for the Li[Ni(0.6)Co(0.2)Mn(0.2)]O2 is uniformly distributed in the range of100-300 nm.Although the initial discharge capacity of the Li/Li[NixCoyMn2]O2 cells reduces with decreasing the Ni content,the cyclic performance and rate capability are improved with higher Mn or Co content.The Li[Ni(0.6)Co(0.2)Mn(0.2)]O2 can deliver excellent cyclability with a capacity retention of 97.1%after 50 cycles.展开更多
利用基于密度泛函理论(DFT)的Dmol^(3)程序广义梯度近似PBE泛函,研究了Co^(q)_(n)(n=1~5;q=0,+,-)团簇和原子氧吸附在团簇上的几何结构、稳定性、电子性质和吸附反应行为。结果表明:Co^(q)_(n)团簇的几何结构保持不变,阳离子型团簇(Co^(...利用基于密度泛函理论(DFT)的Dmol^(3)程序广义梯度近似PBE泛函,研究了Co^(q)_(n)(n=1~5;q=0,+,-)团簇和原子氧吸附在团簇上的几何结构、稳定性、电子性质和吸附反应行为。结果表明:Co^(q)_(n)团簇的几何结构保持不变,阳离子型团簇(Co^(+)_(n))的平均结合能远大于中性型(Co^(0)_(n))和阴离子型(Co^(-)_(n))团簇的平均结合能,这是因为团簇失去一个电子后可以显著增强该团簇的稳定性;原子氧在Co^(q)_(n)团簇顶位、桥位、空位的吸附稳定性、Co—O键长、原子氧的电荷转移都呈现出规律性变化,说明原子氧被活化;Co^(-)_(4) O B团簇的吸附能为-8.375 eV,轨道分析进一步表明其原子氧的2p轨道和钴的3d轨道杂化,相互作用为化学吸附。展开更多
A novel spherical tremella-like Sb2O3 was prepared by using metal-organic frameworks(MOFs)method under a mild liquid-phase reaction condition,and was further employed as an anode material for lithium-ion batteries(LIB...A novel spherical tremella-like Sb2O3 was prepared by using metal-organic frameworks(MOFs)method under a mild liquid-phase reaction condition,and was further employed as an anode material for lithium-ion batteries(LIBs).The effect of reaction temperature and time on morphologies of Sb2O3 was studied.The results from SEM and TEM demonstrate that the tremella-like Sb2O3 architecture are composed of numerous nanosheets with high specific surface area.When the tremella-like Sb2O3 was used as LIBs anode,the discharge and charge capacities can achieve 724 and 446 mA·h/g in the first cycle,respectively.Moreover,the electrode retains an impressive high capacity of 275 mA·h/g even after 50 cycles at 20 mA/g,indicating that the material is extremely promising for application in LIBs.展开更多
基金Project(21473258)supported by the National Natural Science Foundation of ChinaProject(13JJ1004)supported by the Distinguished Young Scientists of Hunan Province,ChinaProject(NCET-11-0513)supported by the New Century Excellent Talents in University,China
文摘Li[NixCoyMn2]O2(0.6≤x≤0.8) cathode materials with a typical hexagonal α-NaFeO2 structure were prepared utilizing a co-precipitation method.It is found that the ratio of peak intensities of(003) to(104) observed from X-ray diffraction(XRD)increases with decreasing the Ni content or increasing the Co content.The scanning electron microscopy(SEM) images reveal that the small primary particles are agglomerated to form the secondary ones.As the Mn content increases,the primary and secondary particles become larger and the resulted particle size for the Li[Ni(0.6)Co(0.2)Mn(0.2)]O2 is uniformly distributed in the range of100-300 nm.Although the initial discharge capacity of the Li/Li[NixCoyMn2]O2 cells reduces with decreasing the Ni content,the cyclic performance and rate capability are improved with higher Mn or Co content.The Li[Ni(0.6)Co(0.2)Mn(0.2)]O2 can deliver excellent cyclability with a capacity retention of 97.1%after 50 cycles.
文摘利用基于密度泛函理论(DFT)的Dmol^(3)程序广义梯度近似PBE泛函,研究了Co^(q)_(n)(n=1~5;q=0,+,-)团簇和原子氧吸附在团簇上的几何结构、稳定性、电子性质和吸附反应行为。结果表明:Co^(q)_(n)团簇的几何结构保持不变,阳离子型团簇(Co^(+)_(n))的平均结合能远大于中性型(Co^(0)_(n))和阴离子型(Co^(-)_(n))团簇的平均结合能,这是因为团簇失去一个电子后可以显著增强该团簇的稳定性;原子氧在Co^(q)_(n)团簇顶位、桥位、空位的吸附稳定性、Co—O键长、原子氧的电荷转移都呈现出规律性变化,说明原子氧被活化;Co^(-)_(4) O B团簇的吸附能为-8.375 eV,轨道分析进一步表明其原子氧的2p轨道和钴的3d轨道杂化,相互作用为化学吸附。
基金Project(51674114)supported by the National Natural Science Foundation of ChinaProject(2019JJ40069)supported by the Natural Science Foundation of Hunan Province,ChinaProject(16K025)supported by the Key Laboratory of the Education Department of Hunan Province,China
文摘A novel spherical tremella-like Sb2O3 was prepared by using metal-organic frameworks(MOFs)method under a mild liquid-phase reaction condition,and was further employed as an anode material for lithium-ion batteries(LIBs).The effect of reaction temperature and time on morphologies of Sb2O3 was studied.The results from SEM and TEM demonstrate that the tremella-like Sb2O3 architecture are composed of numerous nanosheets with high specific surface area.When the tremella-like Sb2O3 was used as LIBs anode,the discharge and charge capacities can achieve 724 and 446 mA·h/g in the first cycle,respectively.Moreover,the electrode retains an impressive high capacity of 275 mA·h/g even after 50 cycles at 20 mA/g,indicating that the material is extremely promising for application in LIBs.