High-resolution time-and angle-resolved photoemission measurements were conducted on the topological insulator ZrTe_(5).With strong femtosecond photoexcitation,a possible ultrafast phase transition from a weak to a st...High-resolution time-and angle-resolved photoemission measurements were conducted on the topological insulator ZrTe_(5).With strong femtosecond photoexcitation,a possible ultrafast phase transition from a weak to a strong topological insulating phase was experimentally realized by recovering the energy gap inversion in a time scale that was shorter than 0.15 ps.This photoinduced transient strong topological phase can last longer than 2 ps at the highest excitation fluence studied,and it cannot be attributed to the photoinduced heating of electrons or modification of the conduction band filling.Additionally,the measured unoccupied electronic states are consistent with the first-principles calculation based on experimental crystal lattice constants,which favor a strong topological insulating phase.These findings provide new insights into the longstanding controversy about the strong and weak topological properties in ZrTe_(5),and they suggest that many-body effects including electron–electron interactions must be taken into account to understand the equilibrium weak topological insulating phase in ZrTe_(5).展开更多
We report the physical properties, crystalline and magnetic structures of singe crystals of a new layered antiferromagnetic(AFM) material PrPd0.82Bi2. The measurements of magnetic properties and heat capacity indicate...We report the physical properties, crystalline and magnetic structures of singe crystals of a new layered antiferromagnetic(AFM) material PrPd0.82Bi2. The measurements of magnetic properties and heat capacity indicate an AFM phase transition at TN^7K. A large Sommerfeld coefficient of 329.23 m J·mol-1·K-2 is estimated based on the heat capacity data, implying a possible heavy-fermion behavior. The magnetic structure of this compound is investigated by a combined study of neutron powder and single-crystal diffraction. It is found that an A-type AFM structure with magnetic propagation wavevector k =(0 0 0) is formed below TN. The Pr3+ magnetic moment is aligned along the crystallographic c-axis with an ordered moment of 1.694(3) μBat 4K, which is smaller than the effective moment of the free Pr3+ ion of 3.58 μB.PrPd0.82Bi2 can be grown as large as 1 mm×1 cm in area with a layered shape, and is very easy to be cleaved, providing a unique opportunity to study the interplay between magnetism, possible heavy fermions, and superconductivity.展开更多
基金support from the National Key R&D Program of China(Grant Nos.2021YFA1400202 and 2021YFA1401800)the National Natural Science Foundation of China(Grant Nos.12141404 and 11974243)+3 种基金the Natural Science Foundation of Shanghai(Grant Nos.22ZR1479700 and 23XD1422200)support from the China Postdoctoral Science Foundation(Grant No.2022M722108)support from the National Key R&D Program of China(Grant Nos.2022YFA1402400 and 2021YFA1400100)the National Natural Science Foundation of China(Grant No.12074248)。
文摘High-resolution time-and angle-resolved photoemission measurements were conducted on the topological insulator ZrTe_(5).With strong femtosecond photoexcitation,a possible ultrafast phase transition from a weak to a strong topological insulating phase was experimentally realized by recovering the energy gap inversion in a time scale that was shorter than 0.15 ps.This photoinduced transient strong topological phase can last longer than 2 ps at the highest excitation fluence studied,and it cannot be attributed to the photoinduced heating of electrons or modification of the conduction band filling.Additionally,the measured unoccupied electronic states are consistent with the first-principles calculation based on experimental crystal lattice constants,which favor a strong topological insulating phase.These findings provide new insights into the longstanding controversy about the strong and weak topological properties in ZrTe_(5),and they suggest that many-body effects including electron–electron interactions must be taken into account to understand the equilibrium weak topological insulating phase in ZrTe_(5).
基金National Key Research and Development Program of China(Grant Nos.2017YFA0302901 and 2016YFA0300604)the National Natural Science Foundation of China(Grant No.11774399)+2 种基金Beijing Natural Science Foundation,China(Grant No.Z180008)the K.C.Wong Education Foundation(Grant No.GJTD-2018-01)the DAAD-PPP programme,and the joint German-Sino HGF-OCPC Postdoc Programme.
文摘We report the physical properties, crystalline and magnetic structures of singe crystals of a new layered antiferromagnetic(AFM) material PrPd0.82Bi2. The measurements of magnetic properties and heat capacity indicate an AFM phase transition at TN^7K. A large Sommerfeld coefficient of 329.23 m J·mol-1·K-2 is estimated based on the heat capacity data, implying a possible heavy-fermion behavior. The magnetic structure of this compound is investigated by a combined study of neutron powder and single-crystal diffraction. It is found that an A-type AFM structure with magnetic propagation wavevector k =(0 0 0) is formed below TN. The Pr3+ magnetic moment is aligned along the crystallographic c-axis with an ordered moment of 1.694(3) μBat 4K, which is smaller than the effective moment of the free Pr3+ ion of 3.58 μB.PrPd0.82Bi2 can be grown as large as 1 mm×1 cm in area with a layered shape, and is very easy to be cleaved, providing a unique opportunity to study the interplay between magnetism, possible heavy fermions, and superconductivity.