叶面积指数(Leaf Area Index,LAI)作为表征不同作物生长状况的基本参数,是农业精细化管理及农田生态系统建模的关键。我国农田作物种植比较离散,受地表空间结构非均一性和反演模型非线性等因素影响,不同尺度遥感数据估算的作物LAI存在...叶面积指数(Leaf Area Index,LAI)作为表征不同作物生长状况的基本参数,是农业精细化管理及农田生态系统建模的关键。我国农田作物种植比较离散,受地表空间结构非均一性和反演模型非线性等因素影响,不同尺度遥感数据估算的作物LAI存在一定的差异,即农田作物LAI的遥感反演普遍存在尺度效应问题。以包头遥感综合验证场农业示范区为研究区,利用无人机高光谱数据结合PROSPECT+SAIL模型构建典型农作物区多类型作物的查找表(Look-Up-Table,LUT)反演农田LAI,研究查找表用于玉米、马铃薯、向日葵、瓜地等不同作物LAI反演的适用性和精度;通过无人机高光谱数据聚合获得多尺度遥感数据源,结合Taylor展开理论和计算几何模型,提出了一种既考虑类间差异又考虑类内异质性的尺度转换模型,定量描述多种作物混合的非均一地表LAI反演过程中的尺度效应特征。结果表明:基于分类和参数敏感性分析的LUT方法能很好地应用于包头典型农作物区多类型混合作物LAI反演,总估算精度为相关系数R^2=0.82、均方根误差RMSE=0.43m^2/m^2。随着反演尺度的增加,作物类间差异造成的反演偏差明显高于类内异质性,利用本文所提出的尺度转换模型均能较好纠正低分辨率LAI反演的尺度效应问题。展开更多
文摘叶面积指数(Leaf Area Index,LAI)作为表征不同作物生长状况的基本参数,是农业精细化管理及农田生态系统建模的关键。我国农田作物种植比较离散,受地表空间结构非均一性和反演模型非线性等因素影响,不同尺度遥感数据估算的作物LAI存在一定的差异,即农田作物LAI的遥感反演普遍存在尺度效应问题。以包头遥感综合验证场农业示范区为研究区,利用无人机高光谱数据结合PROSPECT+SAIL模型构建典型农作物区多类型作物的查找表(Look-Up-Table,LUT)反演农田LAI,研究查找表用于玉米、马铃薯、向日葵、瓜地等不同作物LAI反演的适用性和精度;通过无人机高光谱数据聚合获得多尺度遥感数据源,结合Taylor展开理论和计算几何模型,提出了一种既考虑类间差异又考虑类内异质性的尺度转换模型,定量描述多种作物混合的非均一地表LAI反演过程中的尺度效应特征。结果表明:基于分类和参数敏感性分析的LUT方法能很好地应用于包头典型农作物区多类型混合作物LAI反演,总估算精度为相关系数R^2=0.82、均方根误差RMSE=0.43m^2/m^2。随着反演尺度的增加,作物类间差异造成的反演偏差明显高于类内异质性,利用本文所提出的尺度转换模型均能较好纠正低分辨率LAI反演的尺度效应问题。