针对现有电力系统中智能客服机器人语义理解能力不足、关键词定位不准等问题,提出基于条件随机场(conditional random field,CRF)的命名实体识别(named entity recognition,NER)算法。根据实际的电力服务问答数据集,构建领域专用知识库...针对现有电力系统中智能客服机器人语义理解能力不足、关键词定位不准等问题,提出基于条件随机场(conditional random field,CRF)的命名实体识别(named entity recognition,NER)算法。根据实际的电力服务问答数据集,构建领域专用知识库,对语料进行分词与自动标注,并提取出"(地点,故障,解决方案)"的命名实体三元组。在标注后的问答语料数据集上对识别模型进行训练,可以对语料中与3类命名实体关联的关键词进行定位,实现对3类实体的识别并自动构建三元组。在测试语料上的实验结果表明,该算法相对现有方法有效提高了对位置、故障和解决方案3类实体的识别准确率,分别达到了96.44%、92.04%和95.12%。展开更多
文摘针对现有电力系统中智能客服机器人语义理解能力不足、关键词定位不准等问题,提出基于条件随机场(conditional random field,CRF)的命名实体识别(named entity recognition,NER)算法。根据实际的电力服务问答数据集,构建领域专用知识库,对语料进行分词与自动标注,并提取出"(地点,故障,解决方案)"的命名实体三元组。在标注后的问答语料数据集上对识别模型进行训练,可以对语料中与3类命名实体关联的关键词进行定位,实现对3类实体的识别并自动构建三元组。在测试语料上的实验结果表明,该算法相对现有方法有效提高了对位置、故障和解决方案3类实体的识别准确率,分别达到了96.44%、92.04%和95.12%。