期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Suppression of stimulated Brillouin and Raman scatterings using an alternating frequency laser and transverse magnetic fields
1
作者 程瑞锦 李晓旬 +11 位作者 王清 刘德基 黄卓明 吕帅宇 周远志 张舒童 李雪铭 陈祖杰 王强 刘占军 曹莉华 郑春阳 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期545-553,共9页
A novel scheme to suppress both stimulated Brillouin scattering(SBS) and stimulated Raman scattering(SRS) by combining an alternating frequency(AF) laser and a transverse magnetic field is proposed. The AF laser allow... A novel scheme to suppress both stimulated Brillouin scattering(SBS) and stimulated Raman scattering(SRS) by combining an alternating frequency(AF) laser and a transverse magnetic field is proposed. The AF laser allows the laser frequency to change discretely and alternately over time. The suppression of SBS is significant as long as the AF difference is greater than the linear growth rate of SBS or the alternating time of the laser frequency is shorter than the linear growth time of SBS. However, the AF laser proves ineffective in suppressing SRS, which usually has a much higher linear growth rate than SBS. To remedy that, a transverse magnetic field is included to suppress the SRS instability. The electrons trapped in the electron plasma waves(EPWs) of SRS can be accelerated by the surfatron mechanism in a transverse magnetic field and eventually detrapped. While continuously extracting energy from EPWs, the EPWs are dissipated and the kinetic inflation of SRS is suppressed. The one-dimensional particle-in-cell simulation results show that both SBS and SRS can be effectively suppressed by combining the AF laser with a transverse magnetic field with tens of Tesla. The total reflectivity can be dramatically reduced by more than one order of magnitude. These results provide a potential reference for controlling SBS and SRS under the related parameters of inertial confinement fusion. 展开更多
关键词 stimulated Brillouin scattering stimulated Raman scattering alternating frequency laser transverse magnetic field
原文传递
Modulational Instability of Trapped Two-Component Bose-Einstein Condensates 被引量:2
2
作者 Jian-Wen Zhou Xiao-Xun Li +4 位作者 Rui Gao Wen-Shan Qin Hao-Hao Jiang Tao-Tao Li Ju-Kui Xue 《Chinese Physics Letters》 SCIE CAS CSCD 2019年第9期10-13,共4页
The modulational instability of two-component Bose-Einstein condensates(BECs)under an external parabolic potential is discussed.Based on the trapped two-component Gross-Pitaevskill equations,a time-dependent dispersio... The modulational instability of two-component Bose-Einstein condensates(BECs)under an external parabolic potential is discussed.Based on the trapped two-component Gross-Pitaevskill equations,a time-dependent dispersion relation is obtained analytically by means of the modified lens-type transformation and linear stability analysis.It is shown that a modulational unstable time scale exists for trapped two-component BECs.The modulational properties-which are determined by the wave number,external trapping parameter,intraand inter-species atomic interactions-are modified significantly.The analytical results are confirmed by direct numerical simulation.Our results provide a criterion for judging the occurrence of instability of the trapped two-component BECs in experiment. 展开更多
关键词 Modulational INSTABILITY of TRAPPED TWO-COMPONENT BOSE-EINSTEIN CONDENSATES COMPONENT
原文传递
Dynamical stability of dipolar condensate in a parametrically modulated one-dimensional optical lattice
3
作者 Ji-Li Ma Xiao-Xun Li +2 位作者 Rui-Jin Cheng Ai-Xia Zhang Ju-Kui Xue 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第6期143-148,共6页
We study the stabilization properties of dipolar Bose–Einstein condensate in a deep one-dimensional optical lattice with an additional external parametrically modulated harmonic trap potential. Through both analytica... We study the stabilization properties of dipolar Bose–Einstein condensate in a deep one-dimensional optical lattice with an additional external parametrically modulated harmonic trap potential. Through both analytical and numerical methods, we solve a dimensionless nonlocal nonlinear discrete Gross–Pitaevskii equation with both the short-range contact interaction and the long-range dipole–dipole interaction. It is shown that, the stability of dipolar condensate in modulated deep optical lattice can be controled by coupled effects of the contact interaction, the dipolar interaction and the external modulation. The system can be stabilized when the dipolar interaction, the contact interaction, the average strength of potential and the ratio of amplitude to frequency of the modulation satisfy a critical condition. In addition, the breather state, the diffused state and the attractive-interaction-induced-trapped state are predicted. The dipolar interaction and the external modulation of the lattice play important roles in stabilizing the condensate. 展开更多
关键词 Bose–Einstein condensate optical lattice dipole–dipole interaction periodic modulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部