给出了一种针对大量新闻数据的话题检测方法.首先通过LDA(latent dirichlet allocation)模型从语义层面抽取新闻数据主题,有效降低数据分析维度,更合理地体现新闻主题特征.然后改进OPTICS(ordering point to identify the cluster struc...给出了一种针对大量新闻数据的话题检测方法.首先通过LDA(latent dirichlet allocation)模型从语义层面抽取新闻数据主题,有效降低数据分析维度,更合理地体现新闻主题特征.然后改进OPTICS(ordering point to identify the cluster structure)密度聚类算法,基于新闻话题的时间延续性给出了T-OPTICS算法.该算法继承了OPTICS算法对参数不敏感的特性,降低了参数选择对聚类结果的影响.改进了OPTICS算法中文本间相似度的计算方法,体现了话题的时间延续性.基于TDT4数据集的实验表明,该方法能够快速有效地发现新闻中的话题.展开更多
文摘给出了一种针对大量新闻数据的话题检测方法.首先通过LDA(latent dirichlet allocation)模型从语义层面抽取新闻数据主题,有效降低数据分析维度,更合理地体现新闻主题特征.然后改进OPTICS(ordering point to identify the cluster structure)密度聚类算法,基于新闻话题的时间延续性给出了T-OPTICS算法.该算法继承了OPTICS算法对参数不敏感的特性,降低了参数选择对聚类结果的影响.改进了OPTICS算法中文本间相似度的计算方法,体现了话题的时间延续性.基于TDT4数据集的实验表明,该方法能够快速有效地发现新闻中的话题.