目的 探讨临床放射组学列线图(CRN)和深度学习卷积神经网络(DCNN)对非典型肺错构瘤(APH)和非典型肺腺癌(ALA)的鉴别诊断价值。方法 从两家医疗机构回顾性收集307例患者。机构1的患者按照7∶3的比例随机分为训练集(n=184:APH=97,ALA=87)...目的 探讨临床放射组学列线图(CRN)和深度学习卷积神经网络(DCNN)对非典型肺错构瘤(APH)和非典型肺腺癌(ALA)的鉴别诊断价值。方法 从两家医疗机构回顾性收集307例患者。机构1的患者按照7∶3的比例随机分为训练集(n=184:APH=97,ALA=87)和内部验证集(n=79:APH=41,ALA=38),机构2的患者作为外部验证集(n=44:APH=23,ALA=21)。分别建立CRN模型和DCNN模型,并采用德隆检验和受试者工作特性曲线(ROC)对两种模型的性能进行比较。通过人-机竞赛评估人工智能(AI)在肺结节Lung-RADS分类中的价值。结果 DCNN模型在训练集和内、外部验证集中的曲线下面积(AUC)均高于CRN模型(0.983 vs 0.968、0.973 vs 0.953、0.942 vs 0.932),但差异无统计学意义(P=0.23、0.31、0.34)。在放射科医师-AI竞争实验中,AI倾向于下调APH组中更多的Lung-RADS类别,并肯定ALA中更多的Lung-RADS类别。结论 DCNN及CRN在区分APH和ALA方面具有较高价值,前者表现更优;AI在评价肺结节的Lung-RADS分类方面优于放射科医师。展开更多
垂直数据分区技术从逻辑上将满足一定语义条件的数据库表属性存放在同一个物理块中,进而降低数据访问成本,提高查询效率.数据库查询负载中的每条查询通常只与数据库表中的部分属性有关,因此只需使用数据库表的某个属性子集便可以得到准...垂直数据分区技术从逻辑上将满足一定语义条件的数据库表属性存放在同一个物理块中,进而降低数据访问成本,提高查询效率.数据库查询负载中的每条查询通常只与数据库表中的部分属性有关,因此只需使用数据库表的某个属性子集便可以得到准确的查询结果.合理的垂直数据分区方式可以使大多数查询负载不需要扫描完整数据库就可以完成查询任务,从而达到减少数据访问量,提高查询处理效率的目的.传统的数据库垂直分区方法主要基于专家设置的启发式规则,分区策略粒度较粗,且不能根据负载的特征进行有针对性的分区优化.同时,当负载规模较大或者属性个数较多时,现有垂直分区方法执行时间过长,尤其无法满足数据库在线实时调优的性能需求.为此,提出在线环境下基于谱聚类的垂直数据分区方法(spectral clustering based vertical partitioning,SCVP),采用分阶段求解的思想,减少算法时间复杂度,加快分区执行速度.首先通过增加约束条件缩小解空间(即根据谱聚类生成初始分区),然后对解空间设计算法进行精细的搜索(即采用频繁项集和贪心搜索相结合的策略对初始分区进行优化).为了进一步提升SCVP在高维属性下的性能,提出了SCVP的改进版本SCVP-R(spectral clustering based vertical partitioning redesign).SCVP-R通过引入同域竞争机制、双败淘汰机制和循环机制,对SCVP在分区优化过程中的合并方案进行了进一步优化.在不同数据集上的实验结果表明,相比于目前最好的垂直分区方法,SCVP和SCVP-R有着更快的执行时间和更好的性能表现.展开更多
文摘目的 探讨临床放射组学列线图(CRN)和深度学习卷积神经网络(DCNN)对非典型肺错构瘤(APH)和非典型肺腺癌(ALA)的鉴别诊断价值。方法 从两家医疗机构回顾性收集307例患者。机构1的患者按照7∶3的比例随机分为训练集(n=184:APH=97,ALA=87)和内部验证集(n=79:APH=41,ALA=38),机构2的患者作为外部验证集(n=44:APH=23,ALA=21)。分别建立CRN模型和DCNN模型,并采用德隆检验和受试者工作特性曲线(ROC)对两种模型的性能进行比较。通过人-机竞赛评估人工智能(AI)在肺结节Lung-RADS分类中的价值。结果 DCNN模型在训练集和内、外部验证集中的曲线下面积(AUC)均高于CRN模型(0.983 vs 0.968、0.973 vs 0.953、0.942 vs 0.932),但差异无统计学意义(P=0.23、0.31、0.34)。在放射科医师-AI竞争实验中,AI倾向于下调APH组中更多的Lung-RADS类别,并肯定ALA中更多的Lung-RADS类别。结论 DCNN及CRN在区分APH和ALA方面具有较高价值,前者表现更优;AI在评价肺结节的Lung-RADS分类方面优于放射科医师。
文摘垂直数据分区技术从逻辑上将满足一定语义条件的数据库表属性存放在同一个物理块中,进而降低数据访问成本,提高查询效率.数据库查询负载中的每条查询通常只与数据库表中的部分属性有关,因此只需使用数据库表的某个属性子集便可以得到准确的查询结果.合理的垂直数据分区方式可以使大多数查询负载不需要扫描完整数据库就可以完成查询任务,从而达到减少数据访问量,提高查询处理效率的目的.传统的数据库垂直分区方法主要基于专家设置的启发式规则,分区策略粒度较粗,且不能根据负载的特征进行有针对性的分区优化.同时,当负载规模较大或者属性个数较多时,现有垂直分区方法执行时间过长,尤其无法满足数据库在线实时调优的性能需求.为此,提出在线环境下基于谱聚类的垂直数据分区方法(spectral clustering based vertical partitioning,SCVP),采用分阶段求解的思想,减少算法时间复杂度,加快分区执行速度.首先通过增加约束条件缩小解空间(即根据谱聚类生成初始分区),然后对解空间设计算法进行精细的搜索(即采用频繁项集和贪心搜索相结合的策略对初始分区进行优化).为了进一步提升SCVP在高维属性下的性能,提出了SCVP的改进版本SCVP-R(spectral clustering based vertical partitioning redesign).SCVP-R通过引入同域竞争机制、双败淘汰机制和循环机制,对SCVP在分区优化过程中的合并方案进行了进一步优化.在不同数据集上的实验结果表明,相比于目前最好的垂直分区方法,SCVP和SCVP-R有着更快的执行时间和更好的性能表现.