In this paper, the aim is to establish the local existence of classical solutions for a class of compressible non-Newtonian fluids with vacuum in one-dimensional bounded intervals, under the assumption that the data s...In this paper, the aim is to establish the local existence of classical solutions for a class of compressible non-Newtonian fluids with vacuum in one-dimensional bounded intervals, under the assumption that the data satisfies a natural compatibility condition. For the results, the initial density does not need to be bounded below away from zero.展开更多
In this paper,we consider the 3D compressible isentropic Navier-Stokes equations when the shear viscosityμis a positive constant and the bulk viscosity is λ(ρ)=ρ^(β) with β>2,which is a situation that was fir...In this paper,we consider the 3D compressible isentropic Navier-Stokes equations when the shear viscosityμis a positive constant and the bulk viscosity is λ(ρ)=ρ^(β) with β>2,which is a situation that was first introduced by Vaigant and Kazhikhov in[1].The global axisymmetric classical solution with arbitrarily large initial data in a periodic domain Ω={(r,z)|r=√x^(2)+y^(2),(x,y,z)∈R^(3),r∈I⊂(0,+∞),-∞<z<+∞} is obtained.Here the initial density keeps a non-vacuum state ρ>0 when z→±∞.Our results also show that the solution will not develop the vacuum state in any finite time,provided that the initial density is uniformly away from the vacuum.展开更多
基金Supported by NSFC(11201371,1331005)Natural Science Foundation of Shaanxi Province(2012JQ020)
文摘In this paper, the aim is to establish the local existence of classical solutions for a class of compressible non-Newtonian fluids with vacuum in one-dimensional bounded intervals, under the assumption that the data satisfies a natural compatibility condition. For the results, the initial density does not need to be bounded below away from zero.
基金supported by NNSFC(11701443,11901444,11931013)Natural Science Basic Research Plan in Shaanxi Province of China(2019JQ-870)。
文摘In this paper,we consider the 3D compressible isentropic Navier-Stokes equations when the shear viscosityμis a positive constant and the bulk viscosity is λ(ρ)=ρ^(β) with β>2,which is a situation that was first introduced by Vaigant and Kazhikhov in[1].The global axisymmetric classical solution with arbitrarily large initial data in a periodic domain Ω={(r,z)|r=√x^(2)+y^(2),(x,y,z)∈R^(3),r∈I⊂(0,+∞),-∞<z<+∞} is obtained.Here the initial density keeps a non-vacuum state ρ>0 when z→±∞.Our results also show that the solution will not develop the vacuum state in any finite time,provided that the initial density is uniformly away from the vacuum.