对NCAR CLM3.0(Community Land Model)的冻土过程参数化进行了改进。根据平衡态的热力学关系和考虑含冰量的土壤基质势的经验公式定义了冰点下的最大液态水含量,超过最大液态水含量的部分冻结为冰,并在水导率的计算中加入了冰的阻挡作...对NCAR CLM3.0(Community Land Model)的冻土过程参数化进行了改进。根据平衡态的热力学关系和考虑含冰量的土壤基质势的经验公式定义了冰点下的最大液态水含量,超过最大液态水含量的部分冻结为冰,并在水导率的计算中加入了冰的阻挡作用。利用青藏高原改则站2003年4月1日至2004年12月31日的观测资料进行了单点模拟试验,模拟结果表明,原模式对辐射通量模拟比较准确,但低估了冬季冻结期的液态水含量,高估了冰含量,土壤温度也因此出现偏差,改进冻土参数化后对液态水和冰的模拟明显改善,土壤温度模拟也更接近实测,部分改进了模式对土壤水热过程的模拟能力。展开更多
利用ERA-interim月平均再分析资料、相关分析和信息流方法,分析了1979~2015年夏半年(5~9月)100 h Pa上南亚高压与邻近地区臭氧变化的相互作用。结果表明:除7月外,夏半年南亚高压与南亚高压区臭氧低值(简称臭氧低值)存在相互作用。6月和...利用ERA-interim月平均再分析资料、相关分析和信息流方法,分析了1979~2015年夏半年(5~9月)100 h Pa上南亚高压与邻近地区臭氧变化的相互作用。结果表明:除7月外,夏半年南亚高压与南亚高压区臭氧低值(简称臭氧低值)存在相互作用。6月和9月南亚高压和臭氧低值强度变化相互影响,而在5月和8月二者的作用仅仅是单向的。在6月南亚高压和臭氧低值的中部和西部边缘,以及9月南亚高压北部和臭氧低值中心区,臭氧低值增强(减弱)可能是南亚高压增强(减弱)的部分原因,南亚高压增强(减弱)也可能是臭氧低值增强(减弱)的部分原因。在6月南亚高压和臭氧低值的东南部、8月南亚高压和臭氧低值的西部和东部,以及9月南亚高压的西部,南亚高压增强(减弱)可能导致臭氧低值增强(减弱)。在5月南亚高压西部和臭氧低值南部,臭氧低值的增强(减弱)可能导致了南亚高压的增强(减弱)。根据相关分析,推测臭氧变化对南亚高压变化的可能影响机制如下:当南亚高压区臭氧浓度出现正异常时,辐射加热在其上部(下部)为负异常(正异常),导致高层(低层)异常辐合(辐散),从而导致下沉异常。高层异常辐合与下沉异常最终使南亚高压异常减弱。而臭氧浓度负异常导致南亚高压呈现正异常的过程与上述过程相反。展开更多
为减少不同气候模式评估气溶胶气候效应的差异,第六次耦合模式比较计划(Coupled Model Intercomparison Project Phase 6,CMIP6)直接给定了人为气溶胶强迫数据。因此,有必要基于此强迫数据重新评估气溶胶气候效应。本研究首先将CMIP6给...为减少不同气候模式评估气溶胶气候效应的差异,第六次耦合模式比较计划(Coupled Model Intercomparison Project Phase 6,CMIP6)直接给定了人为气溶胶强迫数据。因此,有必要基于此强迫数据重新评估气溶胶气候效应。本研究首先将CMIP6给出的描述人为气溶胶强迫的模块引入南京信息工程大学(Nanjing University of Information Science and Technology,NUIST)的地球系统模式(The NUIST Earth System Model,NESM)。之后,利用NESM模式评估地球辐射收支平衡对此人为气溶胶强迫的响应,并分析模式模拟结果的不确定性。评估给出的人为气溶胶有效辐射强迫为-0.45(±0.28)W·m^-2。其中,气溶胶直接辐射效应为-0.34(±0.01)W·m^-2,与第二次气溶胶比较计划(The second phase of Aerosol Comparisons between Observations and Models,AeroComⅡ)的评估结果基本一致;气溶胶对云辐射强迫的影响(包括半直接效应和间接效应)为-0.10(±0.30)W·m^-2,明显受到模式内部变率的干扰,具有较大的不确定性。展开更多
文摘对NCAR CLM3.0(Community Land Model)的冻土过程参数化进行了改进。根据平衡态的热力学关系和考虑含冰量的土壤基质势的经验公式定义了冰点下的最大液态水含量,超过最大液态水含量的部分冻结为冰,并在水导率的计算中加入了冰的阻挡作用。利用青藏高原改则站2003年4月1日至2004年12月31日的观测资料进行了单点模拟试验,模拟结果表明,原模式对辐射通量模拟比较准确,但低估了冬季冻结期的液态水含量,高估了冰含量,土壤温度也因此出现偏差,改进冻土参数化后对液态水和冰的模拟明显改善,土壤温度模拟也更接近实测,部分改进了模式对土壤水热过程的模拟能力。
文摘利用ERA-interim月平均再分析资料、相关分析和信息流方法,分析了1979~2015年夏半年(5~9月)100 h Pa上南亚高压与邻近地区臭氧变化的相互作用。结果表明:除7月外,夏半年南亚高压与南亚高压区臭氧低值(简称臭氧低值)存在相互作用。6月和9月南亚高压和臭氧低值强度变化相互影响,而在5月和8月二者的作用仅仅是单向的。在6月南亚高压和臭氧低值的中部和西部边缘,以及9月南亚高压北部和臭氧低值中心区,臭氧低值增强(减弱)可能是南亚高压增强(减弱)的部分原因,南亚高压增强(减弱)也可能是臭氧低值增强(减弱)的部分原因。在6月南亚高压和臭氧低值的东南部、8月南亚高压和臭氧低值的西部和东部,以及9月南亚高压的西部,南亚高压增强(减弱)可能导致臭氧低值增强(减弱)。在5月南亚高压西部和臭氧低值南部,臭氧低值的增强(减弱)可能导致了南亚高压的增强(减弱)。根据相关分析,推测臭氧变化对南亚高压变化的可能影响机制如下:当南亚高压区臭氧浓度出现正异常时,辐射加热在其上部(下部)为负异常(正异常),导致高层(低层)异常辐合(辐散),从而导致下沉异常。高层异常辐合与下沉异常最终使南亚高压异常减弱。而臭氧浓度负异常导致南亚高压呈现正异常的过程与上述过程相反。
文摘为减少不同气候模式评估气溶胶气候效应的差异,第六次耦合模式比较计划(Coupled Model Intercomparison Project Phase 6,CMIP6)直接给定了人为气溶胶强迫数据。因此,有必要基于此强迫数据重新评估气溶胶气候效应。本研究首先将CMIP6给出的描述人为气溶胶强迫的模块引入南京信息工程大学(Nanjing University of Information Science and Technology,NUIST)的地球系统模式(The NUIST Earth System Model,NESM)。之后,利用NESM模式评估地球辐射收支平衡对此人为气溶胶强迫的响应,并分析模式模拟结果的不确定性。评估给出的人为气溶胶有效辐射强迫为-0.45(±0.28)W·m^-2。其中,气溶胶直接辐射效应为-0.34(±0.01)W·m^-2,与第二次气溶胶比较计划(The second phase of Aerosol Comparisons between Observations and Models,AeroComⅡ)的评估结果基本一致;气溶胶对云辐射强迫的影响(包括半直接效应和间接效应)为-0.10(±0.30)W·m^-2,明显受到模式内部变率的干扰,具有较大的不确定性。