We have performed the first-principles calculation to investigate the origins of ferroelectricities and different po- larization behaviours of superlattices BaTiO3/SrTiO3 and PbTiO3/SrTiO3. The density of state (DOS...We have performed the first-principles calculation to investigate the origins of ferroelectricities and different po- larization behaviours of superlattices BaTiO3/SrTiO3 and PbTiO3/SrTiO3. The density of state (DOS) and electronic charge profiles show that there are strong hybridizations between atoms Ti and O and between atoms Pb and O which play very important roles in producing the ferroelectricities of superlattices BaTiO3/SrTiO3 and PbTiO3/SrTiO3. Ow- ing to the decline of internal electric field in SrTiO3 (ST) layer, the tetragonality and polarizations of superlattices decrease with increasing the fraction of SrTiO3 in the superlattices. We find that the polarization of PbTiO3/SrTiO3 is largerthan that of BaTiO3/SrTiO3 at the same ratio of components, because the polarization mismatch between PbTiO3 and SrTiO3 is larger than that between BaTiO3 and SrTiO3. The polarization and tetragonality are en- hanced with respect to those of bulk tetragonal BaTiO3 in the superlattices BaTiO3/SrTiO3, while the polarization and tetragonality are reduced with respect to those of bulk tetragonal PbTiO3 in superlattices PbTiO3/SrTiO3.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10572155, 10172030 and 50232030).
文摘We have performed the first-principles calculation to investigate the origins of ferroelectricities and different po- larization behaviours of superlattices BaTiO3/SrTiO3 and PbTiO3/SrTiO3. The density of state (DOS) and electronic charge profiles show that there are strong hybridizations between atoms Ti and O and between atoms Pb and O which play very important roles in producing the ferroelectricities of superlattices BaTiO3/SrTiO3 and PbTiO3/SrTiO3. Ow- ing to the decline of internal electric field in SrTiO3 (ST) layer, the tetragonality and polarizations of superlattices decrease with increasing the fraction of SrTiO3 in the superlattices. We find that the polarization of PbTiO3/SrTiO3 is largerthan that of BaTiO3/SrTiO3 at the same ratio of components, because the polarization mismatch between PbTiO3 and SrTiO3 is larger than that between BaTiO3 and SrTiO3. The polarization and tetragonality are en- hanced with respect to those of bulk tetragonal BaTiO3 in the superlattices BaTiO3/SrTiO3, while the polarization and tetragonality are reduced with respect to those of bulk tetragonal PbTiO3 in superlattices PbTiO3/SrTiO3.