为了提高重构相干信号测向算法的估计性能,降低算法运算量,提出了一种基于矩阵重构和酉变换方法的酉矩阵重构算法。该算法首先通过酉变换将阵列接收数据从复值计算转换为实值计算,使计算量大大降低;然后计算阵列协方差矩阵并进行特征值...为了提高重构相干信号测向算法的估计性能,降低算法运算量,提出了一种基于矩阵重构和酉变换方法的酉矩阵重构算法。该算法首先通过酉变换将阵列接收数据从复值计算转换为实值计算,使计算量大大降低;然后计算阵列协方差矩阵并进行特征值分解得到信号子空间,再将信号子空间重构为Toeplitz矩阵实现解相干并再次进行酉变换;最后通过特征值分解得到信号子空间并使用最小二乘法实现波达方向(direction of arrival,DOA)估计。相比于改进的旋转不变性的信号参数(estimation of signal parameters via rotational invariance techniques-like,ESPRIT-Like)算法和空间平滑处理算法,由于消除了噪声影响、构造了Toeplitz矩阵以及充分利用了数据的共轭信息,该算法的估计精度更高、具有更高的运算效率且在ESPRIT-Like算法失效的条件下新算法仍能有效估计DOA。本文算法的运行时间是ESPRIT-Like算法的71.2%,实验结果证明了该方法的有效性和真实性。展开更多
针对色噪声下基于差分去噪的宽带相干信号波达方向(direction of arrival,DOA)估计方法对相干信源数有限制的问题,提出一种基于噪声圆形特性去噪和Toeplitz矩阵重构的估计算法。首先,对接收到的信号求取协方差矩阵,利用噪声的圆形特性...针对色噪声下基于差分去噪的宽带相干信号波达方向(direction of arrival,DOA)估计方法对相干信源数有限制的问题,提出一种基于噪声圆形特性去噪和Toeplitz矩阵重构的估计算法。首先,对接收到的信号求取协方差矩阵,利用噪声的圆形特性消除噪声。为达到对协方差矩阵进行Toeplitz矩阵重构的要求,通过协方差矩阵相乘来构造新的数据协方差矩阵。然后,通过Toeplitz矩阵重构来解相干。最后,利用旋转子空间算法准则构造聚焦矩阵,使用传播算子算法实现DOA估计。理论分析及仿真实验验证了该算法的有效性,该算法对相干信源数的奇偶没有限制,同时该算法也适用于高斯白噪声下宽带相干信号DOA估计的场景。展开更多
文摘为了提高重构相干信号测向算法的估计性能,降低算法运算量,提出了一种基于矩阵重构和酉变换方法的酉矩阵重构算法。该算法首先通过酉变换将阵列接收数据从复值计算转换为实值计算,使计算量大大降低;然后计算阵列协方差矩阵并进行特征值分解得到信号子空间,再将信号子空间重构为Toeplitz矩阵实现解相干并再次进行酉变换;最后通过特征值分解得到信号子空间并使用最小二乘法实现波达方向(direction of arrival,DOA)估计。相比于改进的旋转不变性的信号参数(estimation of signal parameters via rotational invariance techniques-like,ESPRIT-Like)算法和空间平滑处理算法,由于消除了噪声影响、构造了Toeplitz矩阵以及充分利用了数据的共轭信息,该算法的估计精度更高、具有更高的运算效率且在ESPRIT-Like算法失效的条件下新算法仍能有效估计DOA。本文算法的运行时间是ESPRIT-Like算法的71.2%,实验结果证明了该方法的有效性和真实性。
文摘针对色噪声下基于差分去噪的宽带相干信号波达方向(direction of arrival,DOA)估计方法对相干信源数有限制的问题,提出一种基于噪声圆形特性去噪和Toeplitz矩阵重构的估计算法。首先,对接收到的信号求取协方差矩阵,利用噪声的圆形特性消除噪声。为达到对协方差矩阵进行Toeplitz矩阵重构的要求,通过协方差矩阵相乘来构造新的数据协方差矩阵。然后,通过Toeplitz矩阵重构来解相干。最后,利用旋转子空间算法准则构造聚焦矩阵,使用传播算子算法实现DOA估计。理论分析及仿真实验验证了该算法的有效性,该算法对相干信源数的奇偶没有限制,同时该算法也适用于高斯白噪声下宽带相干信号DOA估计的场景。