高水平论文是优秀科技人才的标志性成果之一。聚焦"Web Of Science(WOS)"热点研究学科,在构建学术论文语义Neo4j网络图和挖掘出活跃科研社区基础上,利用PageRank人才挖掘算法实现对科研社区中优秀科研人才的挖掘。首先,对现...高水平论文是优秀科技人才的标志性成果之一。聚焦"Web Of Science(WOS)"热点研究学科,在构建学术论文语义Neo4j网络图和挖掘出活跃科研社区基础上,利用PageRank人才挖掘算法实现对科研社区中优秀科研人才的挖掘。首先,对现有的人才挖掘算法进行详细研究和分析;其次,结合WOS论文数据对PageRank人才挖掘算法进行了优化设计和实现,加入了论文发表的时间因子、作者署名排序递减模型、周围作者节点对当前节点的影响、论文被引用量等多维度考量因素。最后,基于热点学科计算机科学某社区近五年的论文数据进行了实验和验证。结果表明,基于社区的挖掘更具有针对性,能够快速定位各学科代表性优秀和潜在人才,且改进后的算法对人才的发现更加客观有效。展开更多
本文以1900-2019年"Web of Science(WOS)"核心合集中的中国科学院(中科院)部分论文数据为面板数据对热点学科、科研社区及相关权威专家进行了分析研究.首先对艺术与人文、生命科学与生物医学、自然科学、社会科学、应用科学...本文以1900-2019年"Web of Science(WOS)"核心合集中的中国科学院(中科院)部分论文数据为面板数据对热点学科、科研社区及相关权威专家进行了分析研究.首先对艺术与人文、生命科学与生物医学、自然科学、社会科学、应用科学五大学科数据进行分析,发现应用科学(Technology)发表论文年增速最快,且研究热点为计算机科学(Computer Science);其次针对研究热点应用Neo4j图数据库构建论文语义网络图,对实体关系进行优化,提升了社区内部关联度;并基于Louvain社区发现算法进行了相关优化和数据挖掘,分析了其背后的优秀科研团队;最后针对挖掘出的社区,利用PageRank算法筛选出高产出的权威科研人员,为科研合作和人才发现甚至国家学科布局提供参考.实验表明,通过Neo4j图数据库中实体数据索引设计,查询性能提升高达16倍;通过对Louvain算法关系属性weight添加机构影响维度,社区模块度提升了84%.展开更多
文摘高水平论文是优秀科技人才的标志性成果之一。聚焦"Web Of Science(WOS)"热点研究学科,在构建学术论文语义Neo4j网络图和挖掘出活跃科研社区基础上,利用PageRank人才挖掘算法实现对科研社区中优秀科研人才的挖掘。首先,对现有的人才挖掘算法进行详细研究和分析;其次,结合WOS论文数据对PageRank人才挖掘算法进行了优化设计和实现,加入了论文发表的时间因子、作者署名排序递减模型、周围作者节点对当前节点的影响、论文被引用量等多维度考量因素。最后,基于热点学科计算机科学某社区近五年的论文数据进行了实验和验证。结果表明,基于社区的挖掘更具有针对性,能够快速定位各学科代表性优秀和潜在人才,且改进后的算法对人才的发现更加客观有效。
文摘本文以1900-2019年"Web of Science(WOS)"核心合集中的中国科学院(中科院)部分论文数据为面板数据对热点学科、科研社区及相关权威专家进行了分析研究.首先对艺术与人文、生命科学与生物医学、自然科学、社会科学、应用科学五大学科数据进行分析,发现应用科学(Technology)发表论文年增速最快,且研究热点为计算机科学(Computer Science);其次针对研究热点应用Neo4j图数据库构建论文语义网络图,对实体关系进行优化,提升了社区内部关联度;并基于Louvain社区发现算法进行了相关优化和数据挖掘,分析了其背后的优秀科研团队;最后针对挖掘出的社区,利用PageRank算法筛选出高产出的权威科研人员,为科研合作和人才发现甚至国家学科布局提供参考.实验表明,通过Neo4j图数据库中实体数据索引设计,查询性能提升高达16倍;通过对Louvain算法关系属性weight添加机构影响维度,社区模块度提升了84%.