采用冷金属过渡模式(Cold Metal Transfer,CMT)的同轴送丝电弧熔丝增材制造技术制备了TC4-DT钛合金直壁墙试块,对其高低倍组织及其形成机理进行了研究,使用3D-Rosenthal模型对其凝固过程进行了模拟计算。低倍组织表明,弧形热影响区为细...采用冷金属过渡模式(Cold Metal Transfer,CMT)的同轴送丝电弧熔丝增材制造技术制备了TC4-DT钛合金直壁墙试块,对其高低倍组织及其形成机理进行了研究,使用3D-Rosenthal模型对其凝固过程进行了模拟计算。低倍组织表明,弧形热影响区为细等轴晶,堆积区底层为细柱状晶区,中层和顶层为等轴晶与短柱状晶的混合。这种组织,与电子束熔丝和旁轴送丝电弧熔丝的粗大柱状晶组织有明显的不同;堆积区的高倍组织以编织状的α相板条为主,在部分原始β晶界可见连续的晶界α相和集束状α相板条,且有热影响层界线,与电子束熔丝和旁轴送丝电弧熔丝的高倍组织接近。模拟计算的结果表明,熔池边界的最大温度梯度约为12652.6 K/cm,最大凝固速度约为1.5 cm/s,该凝固条件处于柱状晶-等轴晶转变(Columnar-Equiaxed Transformation,CET)模型中的混合组织区;根据计算结果,提高输入功率(P)和焊枪移动速度(V)可促进等轴晶的生成,当P>153 W、V>3.2 mm/s时可得到柱状晶与等轴晶混合的低倍组织,且晶粒尺寸随着V的增大呈减小的趋势。展开更多