InGaN-based light-emitting diodes with p-GaN and p-A1GaN hole injection layers are numerically studied using the APSYS simulation software. The simulation results indicate that light-emitting diodes with p-A1GaN hole ...InGaN-based light-emitting diodes with p-GaN and p-A1GaN hole injection layers are numerically studied using the APSYS simulation software. The simulation results indicate that light-emitting diodes with p-A1GaN hole injection layers show superior optical and electrical performance, such as an increase in light output power, a reduction in current leakage and alleviation of efficiency droop. These improvements can be attributed to the p-A1GaN serving as hole injection layers, which can alleviate the band bending induced by the polarization field, thereby improving both the hole injection efficiency and the electron blocking efficiency.展开更多
InGaN based light-emitting diodes (LEDs) with different electron blocking layers have been numerically investi- gated using the APSYS simulation software. It is found that the structure with a p-AlInN electron block...InGaN based light-emitting diodes (LEDs) with different electron blocking layers have been numerically investi- gated using the APSYS simulation software. It is found that the structure with a p-AlInN electron blocking layer showes improved light output power, lower current leakage, and smaller efficiency droop. Based on numerical simulation and analysis, these improvements of the electrical and optical characteristics are mainly attributed to the efficient electron blocking in the InGaN/GaN multiple quantum wells (MQWs).展开更多
InGaN based light-emitting diodes (LEDs) with dip-shaped quantum wells and conventional rectangular quantum ~lls are numerically investigated by using the APSYS simulation software. It is found that the structure wi...InGaN based light-emitting diodes (LEDs) with dip-shaped quantum wells and conventional rectangular quantum ~lls are numerically investigated by using the APSYS simulation software. It is found that the structure with dip- aped quantum wells shows improved light output power, lower current leakage and less efficiency droop. Based on Lmerical simulation and analysis, these improvements on the electrical and the optical characteristics are attributed ainly to the alleviation of the electrostatic field in dip-shaped InGaN/GaN multiple quantum wells (MQWs).展开更多
GaN-based light-emitting devices(LEDs)with different electron blocking layers are theoretically studied and compared by using the advanced physical models of a semiconductor device simulation program.It is found that ...GaN-based light-emitting devices(LEDs)with different electron blocking layers are theoretically studied and compared by using the advanced physical models of a semiconductor device simulation program.It is found that the structure with an AlInN electron blocking layer shows improved light output power,lower current leakage and efficiency droop.Based on numerical simulation and analysis,these improvements of the electrical and optical characteristics are mainly accounted for by efficient electron blocking.It can be concluded that Auger recombination is responsible for the dominant origin of the efficiency droop of a GaN-based LED as current increases.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 50602018)the Science and Technology Program of Guangdong Province,China (Grant Nos. 2010B090400456,2009B011100003,and 2010A081002002)the Science and Technology Program of Guangzhou City,China (Grant No. 2010U1-D00191)
文摘InGaN-based light-emitting diodes with p-GaN and p-A1GaN hole injection layers are numerically studied using the APSYS simulation software. The simulation results indicate that light-emitting diodes with p-A1GaN hole injection layers show superior optical and electrical performance, such as an increase in light output power, a reduction in current leakage and alleviation of efficiency droop. These improvements can be attributed to the p-A1GaN serving as hole injection layers, which can alleviate the band bending induced by the polarization field, thereby improving both the hole injection efficiency and the electron blocking efficiency.
基金Project supported by the National Natural Science Foundation of China (Grant No.50602018)the Science and Technology Program of Guangdong Province,China (Grant Nos.2010B090400456,2009B011100003,and 2010A081002002)the Science and Technology Program of Guangzhou City,China (Grant No.2010U1-D00191)
文摘InGaN based light-emitting diodes (LEDs) with different electron blocking layers have been numerically investi- gated using the APSYS simulation software. It is found that the structure with a p-AlInN electron blocking layer showes improved light output power, lower current leakage, and smaller efficiency droop. Based on numerical simulation and analysis, these improvements of the electrical and optical characteristics are mainly attributed to the efficient electron blocking in the InGaN/GaN multiple quantum wells (MQWs).
基金supported by the National Natural Science Foundation of China (Grant No. 50602018)the Science and Technology Program of Guangdong Province of China (Grant Nos. 2010B090400456, 2009B011100003, and 2010A081002002)the Scienceand Technology Program of Guangzhou City, China (Grant No. 2010U1-D00191)
文摘InGaN based light-emitting diodes (LEDs) with dip-shaped quantum wells and conventional rectangular quantum ~lls are numerically investigated by using the APSYS simulation software. It is found that the structure with dip- aped quantum wells shows improved light output power, lower current leakage and less efficiency droop. Based on Lmerical simulation and analysis, these improvements on the electrical and the optical characteristics are attributed ainly to the alleviation of the electrostatic field in dip-shaped InGaN/GaN multiple quantum wells (MQWs).
基金Supported by the National Natural Science Foundation of China under Grant No 61078046the Natural Science Foundation of Guangdong Province under Grant No 10151063101000009the Scientific and Technological Plan Project of Guangdong Province under Grant No 2010B010600030.
文摘GaN-based light-emitting devices(LEDs)with different electron blocking layers are theoretically studied and compared by using the advanced physical models of a semiconductor device simulation program.It is found that the structure with an AlInN electron blocking layer shows improved light output power,lower current leakage and efficiency droop.Based on numerical simulation and analysis,these improvements of the electrical and optical characteristics are mainly accounted for by efficient electron blocking.It can be concluded that Auger recombination is responsible for the dominant origin of the efficiency droop of a GaN-based LED as current increases.