FISH(fluorescence in situ hybridization,荧光原位杂交)染色是应用于病理分析的重要技术。传统的手工染色方式由于操作繁琐及实验条件限制难以控制杂交质量,而国内现有的染色系统存在自动化程度低等缺点。为了解决上述问题,基于STM32...FISH(fluorescence in situ hybridization,荧光原位杂交)染色是应用于病理分析的重要技术。传统的手工染色方式由于操作繁琐及实验条件限制难以控制杂交质量,而国内现有的染色系统存在自动化程度低等缺点。为了解决上述问题,基于STM32嵌入式系统和GUI(graphical user interface,图形用户界面)开发了一套全自动病理染色控制系统。以STM32F103ZET6作为下位机处理器,利用QT软件和C++语言设计GUI界面,实现了对多样本FISH染色过程的全自动化控制。所研发的控制系统能够满足全自动病理染色系统的控制要求,滴加试剂的位置精度达到0.05 mm,试剂体积精度达到0.6μL,设备故障响应时间小于0.5 s,多次实验设备运行故障率小于3%,加样时试剂类型选择准确率达到100%,图像可判读率达到90%以上。该控制系统具有高效率、高鲁棒性的优点,结合全自动病理染色硬件系统进行染色实验,取得了均匀、良好的染色效果,因此具有良好的应用价值。展开更多
文摘FISH(fluorescence in situ hybridization,荧光原位杂交)染色是应用于病理分析的重要技术。传统的手工染色方式由于操作繁琐及实验条件限制难以控制杂交质量,而国内现有的染色系统存在自动化程度低等缺点。为了解决上述问题,基于STM32嵌入式系统和GUI(graphical user interface,图形用户界面)开发了一套全自动病理染色控制系统。以STM32F103ZET6作为下位机处理器,利用QT软件和C++语言设计GUI界面,实现了对多样本FISH染色过程的全自动化控制。所研发的控制系统能够满足全自动病理染色系统的控制要求,滴加试剂的位置精度达到0.05 mm,试剂体积精度达到0.6μL,设备故障响应时间小于0.5 s,多次实验设备运行故障率小于3%,加样时试剂类型选择准确率达到100%,图像可判读率达到90%以上。该控制系统具有高效率、高鲁棒性的优点,结合全自动病理染色硬件系统进行染色实验,取得了均匀、良好的染色效果,因此具有良好的应用价值。