期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进YOLO-V5算法的烟火检测方法
1
作者 张明振 段江忠 +2 位作者 梁肇伟 郭俊杰 柴大山 《中国安全科学学报》 CAS CSCD 北大核心 2024年第5期155-161,共7页
为减少自然环境中云、水雾、沙尘、灯光、日出、日落等干扰因素对烟雾、火焰目标检测准确性的影响,提出一种基于改进YOLO-V5算法的烟火检测算法。采用现场采集和网络爬取的方法获取烟雾、火焰目标图像和干扰类图像数据集,均衡学习训练样... 为减少自然环境中云、水雾、沙尘、灯光、日出、日落等干扰因素对烟雾、火焰目标检测准确性的影响,提出一种基于改进YOLO-V5算法的烟火检测算法。采用现场采集和网络爬取的方法获取烟雾、火焰目标图像和干扰类图像数据集,均衡学习训练样本,提高模型泛化能力;使用加权双向特征金字塔网络(BiFPN)替换原有的特征金字塔网络(FPN)+路径聚合网络(PAN)结构,对目标进行多尺度特征融合,加强模型特征融合能力;同时,运用距离交并比(DIoU)非极大值抑制(NMS)替代原有的NMS,加快检测框损失函数收敛速度,加强模型推理能力。结果表明:改进后的算法准确率为79.2%,召回率为68.6%,平均精度均值(mAP)为74.2%,误报率(FPR)为12.8%;相比于原YOLO-V5算法,改进后的算法准确率、召回率、mAP分别提高1.9%、0.9%、2.7%,检测识别FPR降低3.7%。 展开更多
关键词 YOLO-V5算法 烟雾 火焰 目标检测 误报率(FPR)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部