Using angle-resolved photoemission spectroscopy, we study the low-energy electronic structure of a layered ternary telluride EuSbTe3 semiconductor. It is found that the photoemission constant energy contours can be we...Using angle-resolved photoemission spectroscopy, we study the low-energy electronic structure of a layered ternary telluride EuSbTe3 semiconductor. It is found that the photoemission constant energy contours can be well described by the simple two-parameter(t(perp) and t(para)) tight-binding model based on the Te orbitals in square-net planes of EuSbTe3, suggesting its Te 5p orbitals dominated low-lying electronic structure, which is reminiscent of other rare-earth tritellurides. However, a possible charge-density-wave gap of 80 meV is found to persist in 300 K,which renders the unexpected semiconducting properties in EuSbTe3. Moreover, we reveal an extra band gap occurring around 200 meV below the Fermi level at low temperatures, which can be attributed to the interaction between the main and folded bands due to lattice scatterings. Our findings provide the first comprehensive understanding of the electronic structure of layered ternary tellurides, which lays the basis for future research on these compounds.展开更多
High-quality single crystalline niobium films are grown on a-plane sapphire in molecular beam epitaxy. The film is single crystalline with a (110) orientation, and both the rocking curve and the reflection high-ener...High-quality single crystalline niobium films are grown on a-plane sapphire in molecular beam epitaxy. The film is single crystalline with a (110) orientation, and both the rocking curve and the reflection high-energy electron diffraction pattern demonstrate its high-quality with an atomically smooth surface. By in situ study of its electronic structure, a rather weak electron-electron correlation effect is demonstrated experimentally in this 4d transition metal. Moreover, a kink structure is observed in the electronic structure, which may result from electron-phonon interaction and it might contribute to the superconductivity. Our results help to understand the properties of niobium deeply.展开更多
By means of oxide molecular beam epitaxy with shutter-growth mode, we fabricate a series of electron-doped (Sr1-xLax)2IrO4 (001) (x=0, 0.05, 0.1 and 0.15) single crystalline thin films and then investigate the d...By means of oxide molecular beam epitaxy with shutter-growth mode, we fabricate a series of electron-doped (Sr1-xLax)2IrO4 (001) (x=0, 0.05, 0.1 and 0.15) single crystalline thin films and then investigate the doping dependence of the electronic structure utilizing in-situ angle-resolved photoemission spectroscopy. It is found that with the increasing doping content, the Fermi levels of samples progressively shift upward. Prominently, an extra electron pocket crossing the Fermi level around the M point is evidently observed in the 15% nominal doping sample. Moreover, bulk-sensitive transport measurements confirm that the doping effectively suppresses the insulating state with respect to the as-grown Sr2IrO4, though the doped samples still remain insulating at low temperatures due to the localization effect possibly stemming from disorders including oxygen deficiencies. Our work provides another feasible doping method to tune electronic structure of Sr2 IrO4.展开更多
Recently, 5d transition metal iridates have been reported as promising materials for the manttfacture of exotic quan- tum states. Apart from the semimetallic ground states that have been observed, perovskite SrlrO3 is...Recently, 5d transition metal iridates have been reported as promising materials for the manttfacture of exotic quan- tum states. Apart from the semimetallic ground states that have been observed, perovskite SrlrO3 is also predicted to have a lattice-symmetrically protected topological state in the (110) plane due to its strong: spin-orbil coupling and electron correlation. Compared with non-polar (001)-SflrO3, the especial polarity of (110)-SrIrC)3 undoubtedly adds the: difficulty of fabrication and largely impedes the research on its surface states. Here, we have successfully synthesized high-quality (110)-SflrO3 thin films on (110)-SrTiO3 substrates by reactive molecular beam epitaxy fi^r the first time. Both reflec- tion high-energy electron diffraction pattems and x-ray diffraction measurements suggest the expected orientation and outstanding crystallinity. A (1 × 2) surface reconstruction driven from the surface instabiJity, the. same as that reported in (110)-SrTiO3, is observed. The electric transport measurements uncover that (110)-SrIrO3 exhibits a more prominent semimetallic property in comparison to (001)-SrIrO3.展开更多
基金Supported by the National Key R&D Program of China under Grant No 2016YFA0300204the National Basic Research Program of China under Grant No 2015CB654901+2 种基金the National Natural Science Foundation of China under Grant Nos 11574337,11227902,11474147 and 11704394the Shanghai Sailing Program under Grant No 17YF1422900the Award for Outstanding Member in Youth Innovation Promotion Association CAS
文摘Using angle-resolved photoemission spectroscopy, we study the low-energy electronic structure of a layered ternary telluride EuSbTe3 semiconductor. It is found that the photoemission constant energy contours can be well described by the simple two-parameter(t(perp) and t(para)) tight-binding model based on the Te orbitals in square-net planes of EuSbTe3, suggesting its Te 5p orbitals dominated low-lying electronic structure, which is reminiscent of other rare-earth tritellurides. However, a possible charge-density-wave gap of 80 meV is found to persist in 300 K,which renders the unexpected semiconducting properties in EuSbTe3. Moreover, we reveal an extra band gap occurring around 200 meV below the Fermi level at low temperatures, which can be attributed to the interaction between the main and folded bands due to lattice scatterings. Our findings provide the first comprehensive understanding of the electronic structure of layered ternary tellurides, which lays the basis for future research on these compounds.
基金Supported by the National Key Research and Development Program of China under Grant No 2016YFA0300204the National Natural Science Foundation of China under Grant Nos 11274332,11574337,11404360 and 11227902+2 种基金the Natural Science Foundation of Shanghai under Grant No 14ZR1447600the Strategic Priority Research Program(B) of the Chinese Academy of Sciences under Grant No XDB04040300the Youth Innovation Promotion Association CAS
文摘High-quality single crystalline niobium films are grown on a-plane sapphire in molecular beam epitaxy. The film is single crystalline with a (110) orientation, and both the rocking curve and the reflection high-energy electron diffraction pattern demonstrate its high-quality with an atomically smooth surface. By in situ study of its electronic structure, a rather weak electron-electron correlation effect is demonstrated experimentally in this 4d transition metal. Moreover, a kink structure is observed in the electronic structure, which may result from electron-phonon interaction and it might contribute to the superconductivity. Our results help to understand the properties of niobium deeply.
基金Supported by the National Basic Research Program of China(973 Program)under Grant Nos 2011CBA00106 and2012CB927400the National Natural Science Foundation of China under Grant Nos 11274332 and 11227902Helmholtz Association through the Virtual Institute for Topological Insulators(VITI).M.Y.Li and D.W.Shen are also supported by the Strategic Priority Research Program(B)of the Chinese Academy of Sciences under Grant No XDB04040300
文摘By means of oxide molecular beam epitaxy with shutter-growth mode, we fabricate a series of electron-doped (Sr1-xLax)2IrO4 (001) (x=0, 0.05, 0.1 and 0.15) single crystalline thin films and then investigate the doping dependence of the electronic structure utilizing in-situ angle-resolved photoemission spectroscopy. It is found that with the increasing doping content, the Fermi levels of samples progressively shift upward. Prominently, an extra electron pocket crossing the Fermi level around the M point is evidently observed in the 15% nominal doping sample. Moreover, bulk-sensitive transport measurements confirm that the doping effectively suppresses the insulating state with respect to the as-grown Sr2IrO4, though the doped samples still remain insulating at low temperatures due to the localization effect possibly stemming from disorders including oxygen deficiencies. Our work provides another feasible doping method to tune electronic structure of Sr2 IrO4.
基金Project supported by the National Key Research and Development Program of the MOST of China(Grant No.2016YFA0300204)the National Key Basic Research Program of China(Grant No.2015CB654901)+2 种基金the National Natural Science Foundation of China(Grant Nos.11574337,11227902,11474147,and11704394)Shanghai Sailing Program(Grant No.17YF1422900)the Award for Outstanding Member in Youth Innovation Promotion Association of the Chinese Academy of Sciences
文摘Recently, 5d transition metal iridates have been reported as promising materials for the manttfacture of exotic quan- tum states. Apart from the semimetallic ground states that have been observed, perovskite SrlrO3 is also predicted to have a lattice-symmetrically protected topological state in the (110) plane due to its strong: spin-orbil coupling and electron correlation. Compared with non-polar (001)-SflrO3, the especial polarity of (110)-SrIrC)3 undoubtedly adds the: difficulty of fabrication and largely impedes the research on its surface states. Here, we have successfully synthesized high-quality (110)-SflrO3 thin films on (110)-SrTiO3 substrates by reactive molecular beam epitaxy fi^r the first time. Both reflec- tion high-energy electron diffraction pattems and x-ray diffraction measurements suggest the expected orientation and outstanding crystallinity. A (1 × 2) surface reconstruction driven from the surface instabiJity, the. same as that reported in (110)-SrTiO3, is observed. The electric transport measurements uncover that (110)-SrIrO3 exhibits a more prominent semimetallic property in comparison to (001)-SrIrO3.