以76份有代表性的小种红茶为研究对象,采用现行国标方法测定的茶多酚和咖啡碱含量作为近红外预测模型的化学值,对应采集样品的近红外光谱值,分别建立小种红茶茶多酚和咖啡碱含量最佳偏最小二乘法(Partial least squares,PLS)模型。结果...以76份有代表性的小种红茶为研究对象,采用现行国标方法测定的茶多酚和咖啡碱含量作为近红外预测模型的化学值,对应采集样品的近红外光谱值,分别建立小种红茶茶多酚和咖啡碱含量最佳偏最小二乘法(Partial least squares,PLS)模型。结果表明,所构建的茶多酚含量模型校正集决定系数(Coefficient of determination,R2)为97.59%,校正均方差(Root mean square error of calibration,RMSEC)为0.566%,验证集R2为95.06%,预测均方差(Root mean square error of prediction,RMSEP)为0.855%;咖啡碱含量模型校正集R2为96.98%,RESEC为0.110%,验证集R2为95.67%,RESEP为0.148%。茶多酚和咖啡碱含量定量分析模型效果均较好,可实现对小种红茶茶多酚和咖啡碱含量的快速检测。展开更多
文摘以76份有代表性的小种红茶为研究对象,采用现行国标方法测定的茶多酚和咖啡碱含量作为近红外预测模型的化学值,对应采集样品的近红外光谱值,分别建立小种红茶茶多酚和咖啡碱含量最佳偏最小二乘法(Partial least squares,PLS)模型。结果表明,所构建的茶多酚含量模型校正集决定系数(Coefficient of determination,R2)为97.59%,校正均方差(Root mean square error of calibration,RMSEC)为0.566%,验证集R2为95.06%,预测均方差(Root mean square error of prediction,RMSEP)为0.855%;咖啡碱含量模型校正集R2为96.98%,RESEC为0.110%,验证集R2为95.67%,RESEP为0.148%。茶多酚和咖啡碱含量定量分析模型效果均较好,可实现对小种红茶茶多酚和咖啡碱含量的快速检测。