A tunable single-longitudinal-mode(SLM) semiconductor optical amplifier(SOA)-based fiber laser based on a dispersion-shifted fiber(DSF) is proposed and successfully demonstrated. SLM operation is obtained due to...A tunable single-longitudinal-mode(SLM) semiconductor optical amplifier(SOA)-based fiber laser based on a dispersion-shifted fiber(DSF) is proposed and successfully demonstrated. SLM operation is obtained due to the spectral narrowing effect resulting from inverse four-wave mixing in a DSF. A tunable optical filter performs wavelength selection function. By inserting a length of DSF in the laser cavity, SLM lasing can possibly be obtained when laser oscillation is stably established after traveling through the DSF many roundtrips. Stable tunable SLM oscillation with a signal-to-noise ratio as high as 65 dB over a wavelength range of about 35 nm is achieved experimentally, and each spectral linewidth is less than 6.5 kHz.展开更多
基金supported by the National Natural Science Foundation of China(No.61475065)the Guangdong Natural Science Foundation of China(No.2015A030313322)
文摘A tunable single-longitudinal-mode(SLM) semiconductor optical amplifier(SOA)-based fiber laser based on a dispersion-shifted fiber(DSF) is proposed and successfully demonstrated. SLM operation is obtained due to the spectral narrowing effect resulting from inverse four-wave mixing in a DSF. A tunable optical filter performs wavelength selection function. By inserting a length of DSF in the laser cavity, SLM lasing can possibly be obtained when laser oscillation is stably established after traveling through the DSF many roundtrips. Stable tunable SLM oscillation with a signal-to-noise ratio as high as 65 dB over a wavelength range of about 35 nm is achieved experimentally, and each spectral linewidth is less than 6.5 kHz.