将传统电磁矢量均匀阵列推广为电磁矢量互质阵列,突破了阵元间距不大于半波长的限制。提出了电磁矢量互质阵列中基于降维Capon的波达方向(Direction of arrival,DOA)和极化联合估计算法。该算法无需假设已知极化信息,且只需一维搜索,避...将传统电磁矢量均匀阵列推广为电磁矢量互质阵列,突破了阵元间距不大于半波长的限制。提出了电磁矢量互质阵列中基于降维Capon的波达方向(Direction of arrival,DOA)和极化联合估计算法。该算法无需假设已知极化信息,且只需一维搜索,避免了多维搜索,可实现DOA和极化参数自动配对;与相同阵元数的均匀阵列相比,明显提高了角度估计性能,并拓展了天线孔径,具有相对较高的自由度,且降低了运算复杂度。相同阵列及参数条件下,本文算法的角度估计性能优于ESPRIT算法和三线性分解算法。展开更多
论文开展互质线阵下的空间谱估计研究。通过利用信号二阶统计量的共轭增广特性,提出互质阵下基于共轭增广的酉旋转不变性进行信号参数估计(Conjugate augmented unitary estimation of signal parameters via rotational invariance tec...论文开展互质线阵下的空间谱估计研究。通过利用信号二阶统计量的共轭增广特性,提出互质阵下基于共轭增广的酉旋转不变性进行信号参数估计(Conjugate augmented unitary estimation of signal parameters via rotational invariance technique,CA?UESPRIT)波达方向(Direction of arrival,DOA)估计算法。该算法先利用不同时长间隔下接收信号的二阶统计量,构造共轭增广虚拟阵列以扩展阵列孔径和提高空间自由度。然后采用基于互质特性的联合UESPRIT算法实现DOA估计。相比于传统互质线阵下的联合UESPRIT算法,CA?UESPRIT算法DOA估计性能更优。此外,通过酉变换可以将ESPRIT算法的协方差矩阵从复数域转化到实数域,降低了复杂度的同时保证了测向精度。仿真结果证实了所提算法的有效性。展开更多
The problem of joint direction of arrival(DOA)and polarization estimation for polarization sensitive coprime planar arrays(PS-CPAs)is investigated,and a fast-convergence quadrilinear decomposition approach is proposed...The problem of joint direction of arrival(DOA)and polarization estimation for polarization sensitive coprime planar arrays(PS-CPAs)is investigated,and a fast-convergence quadrilinear decomposition approach is proposed.Specifically,we first decompose the PS-CPA into two sparse polarization sensitive uniform planar subarrays and employ propagator method(PM)to construct the initial steering matrices separately.Then we arrange the received signals into two quadrilinear models so that the potential DOA and polarization estimates can be attained via quadrilinear alternating least square(QALS).Subsequently,we distinguish the true DOA estimates from the approximate intersecting estimations of the two subarrays in view of the coprime feature.Finally,the polarization estimates paired with DOA can be obtained.In contrast to the conventional QALS algorithm,the proposed approach can remarkably reduce the computational complexity without degrading the estimation performance.Simulations demonstrate the superiority of the proposed fast-convergence approach for PS-CPAs.展开更多
文摘将传统电磁矢量均匀阵列推广为电磁矢量互质阵列,突破了阵元间距不大于半波长的限制。提出了电磁矢量互质阵列中基于降维Capon的波达方向(Direction of arrival,DOA)和极化联合估计算法。该算法无需假设已知极化信息,且只需一维搜索,避免了多维搜索,可实现DOA和极化参数自动配对;与相同阵元数的均匀阵列相比,明显提高了角度估计性能,并拓展了天线孔径,具有相对较高的自由度,且降低了运算复杂度。相同阵列及参数条件下,本文算法的角度估计性能优于ESPRIT算法和三线性分解算法。
文摘论文开展互质线阵下的空间谱估计研究。通过利用信号二阶统计量的共轭增广特性,提出互质阵下基于共轭增广的酉旋转不变性进行信号参数估计(Conjugate augmented unitary estimation of signal parameters via rotational invariance technique,CA?UESPRIT)波达方向(Direction of arrival,DOA)估计算法。该算法先利用不同时长间隔下接收信号的二阶统计量,构造共轭增广虚拟阵列以扩展阵列孔径和提高空间自由度。然后采用基于互质特性的联合UESPRIT算法实现DOA估计。相比于传统互质线阵下的联合UESPRIT算法,CA?UESPRIT算法DOA估计性能更优。此外,通过酉变换可以将ESPRIT算法的协方差矩阵从复数域转化到实数域,降低了复杂度的同时保证了测向精度。仿真结果证实了所提算法的有效性。
基金supported by the Open Research Fund of the State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System(No.CEMEE2019Z0104B)。
文摘The problem of joint direction of arrival(DOA)and polarization estimation for polarization sensitive coprime planar arrays(PS-CPAs)is investigated,and a fast-convergence quadrilinear decomposition approach is proposed.Specifically,we first decompose the PS-CPA into two sparse polarization sensitive uniform planar subarrays and employ propagator method(PM)to construct the initial steering matrices separately.Then we arrange the received signals into two quadrilinear models so that the potential DOA and polarization estimates can be attained via quadrilinear alternating least square(QALS).Subsequently,we distinguish the true DOA estimates from the approximate intersecting estimations of the two subarrays in view of the coprime feature.Finally,the polarization estimates paired with DOA can be obtained.In contrast to the conventional QALS algorithm,the proposed approach can remarkably reduce the computational complexity without degrading the estimation performance.Simulations demonstrate the superiority of the proposed fast-convergence approach for PS-CPAs.