针对3D目标检测点云处理方法存在下采样目标点少,小目标特征信息丢失的问题,提出改进的PointVoxel特征提取方法.首先,以当前先进3D目标检测PV-RCNN(Point-Voxel Feature Set Abstraction for 3D Object Detection)模型为基础,就point-ba...针对3D目标检测点云处理方法存在下采样目标点少,小目标特征信息丢失的问题,提出改进的PointVoxel特征提取方法.首先,以当前先进3D目标检测PV-RCNN(Point-Voxel Feature Set Abstraction for 3D Object Detection)模型为基础,就point-based (基于纯点云)采样后目标点数量较少的问题,提出C-FPS (基于中心最远点采样)算法,即通过图像筛选点云范围,根据标签设置对X增加一个归一化乘以中心点的偏移量,优化点云分布,提高下采样目标点数量;然后,针对voxel-based (基于体素)需要划分体素大小与特征提取平衡的问题,提出体素图像特征融合方法,通过多通道卷积神经网络提取目标图像特征,将多通道特征与voxel-based提取的点云特征进行融合,弥补划分大小导致的特征信息丢失;最后,在KITTI数据集上进行验证.实验表明,与PV-RCNN模型相比,在当前困扰计算机视觉中的小目标检测上,该特征提取方法有效地提升了对小目标的检测能力,对于小目标行人和骑行者,其平均识别精度均优于PV-RCNN模型,提升幅度分别达到了1.62%,1.81%.展开更多
针对高地隙植保机底盘玉米田间植保作业压苗严重的现象,该研究提出了基于车轮正前方可行走动态感兴趣区域(Region of Interest,ROI)的玉米行导航线实时提取算法。首先将获取的玉米苗带图像进行像素归一化,采用过绿算法和最大类间方差法...针对高地隙植保机底盘玉米田间植保作业压苗严重的现象,该研究提出了基于车轮正前方可行走动态感兴趣区域(Region of Interest,ROI)的玉米行导航线实时提取算法。首先将获取的玉米苗带图像进行像素归一化,采用过绿算法和最大类间方差法分割玉米与背景,并通过形态学处理对图像进行增强和去噪;然后对视频第1帧图像应用垂直投影法确定静态ROI区域,并在静态ROI区域内利用特征点聚类算法拟合作物行识别线,基于已识别的玉米行识别线更新和优化动态ROI区域,实现动态ROI区域的动态迁移;最后在动态ROI区域内采用最小二乘法获取高地隙植保机底盘玉米行间导航线。试验表明,该算法具有较好的抗干扰性能,能够很好地适应较为复杂的田间环境,导航线提取准确率为96%,处理一帧分辨率为1920像素×1080像素图像平均耗时97.56 ms,该研究提出的算法能够为高地隙植保机车轮沿玉米垄间行走提供可靠、实时的导航路径。展开更多
文摘针对3D目标检测点云处理方法存在下采样目标点少,小目标特征信息丢失的问题,提出改进的PointVoxel特征提取方法.首先,以当前先进3D目标检测PV-RCNN(Point-Voxel Feature Set Abstraction for 3D Object Detection)模型为基础,就point-based (基于纯点云)采样后目标点数量较少的问题,提出C-FPS (基于中心最远点采样)算法,即通过图像筛选点云范围,根据标签设置对X增加一个归一化乘以中心点的偏移量,优化点云分布,提高下采样目标点数量;然后,针对voxel-based (基于体素)需要划分体素大小与特征提取平衡的问题,提出体素图像特征融合方法,通过多通道卷积神经网络提取目标图像特征,将多通道特征与voxel-based提取的点云特征进行融合,弥补划分大小导致的特征信息丢失;最后,在KITTI数据集上进行验证.实验表明,与PV-RCNN模型相比,在当前困扰计算机视觉中的小目标检测上,该特征提取方法有效地提升了对小目标的检测能力,对于小目标行人和骑行者,其平均识别精度均优于PV-RCNN模型,提升幅度分别达到了1.62%,1.81%.
文摘针对高地隙植保机底盘玉米田间植保作业压苗严重的现象,该研究提出了基于车轮正前方可行走动态感兴趣区域(Region of Interest,ROI)的玉米行导航线实时提取算法。首先将获取的玉米苗带图像进行像素归一化,采用过绿算法和最大类间方差法分割玉米与背景,并通过形态学处理对图像进行增强和去噪;然后对视频第1帧图像应用垂直投影法确定静态ROI区域,并在静态ROI区域内利用特征点聚类算法拟合作物行识别线,基于已识别的玉米行识别线更新和优化动态ROI区域,实现动态ROI区域的动态迁移;最后在动态ROI区域内采用最小二乘法获取高地隙植保机底盘玉米行间导航线。试验表明,该算法具有较好的抗干扰性能,能够很好地适应较为复杂的田间环境,导航线提取准确率为96%,处理一帧分辨率为1920像素×1080像素图像平均耗时97.56 ms,该研究提出的算法能够为高地隙植保机车轮沿玉米垄间行走提供可靠、实时的导航路径。