Inositol 1,4,5-trisphosphate receptors(IP_(3)R)-mediated calcium ion(Ca^(2+))release plays a central role in the regulation of cell survival and death.Bcl-2 limits the Ca^(2+)release function of the IP3R through a dir...Inositol 1,4,5-trisphosphate receptors(IP_(3)R)-mediated calcium ion(Ca^(2+))release plays a central role in the regulation of cell survival and death.Bcl-2 limits the Ca^(2+)release function of the IP3R through a direct or indirect mechanism.However,the two mechanisms are overwhelmingly complex and not completely understood.Here,we convert the mechanisms into a set of ordinary differential equations.We firstly simulate the time evolution of Ca^(2+)concentration under two different levels of Bcl-2 for the direct and indirect mechanism models and compare them with experimental results available in the literature.Secondly,we employ one-and two-parameter bifurcation analysis to demonstrate that Bcl-2 can suppress Ca^(2+)signal from a global point of view both in the direct and indirect mechanism models.We then use mathematical analysis to clarify that the indirect mechanism is more efficient than the direct mechanism in repressing Ca^(2+)signal.Lastly,we predict that the two mechanisms restrict Ca^(2+)signal synergistically.Together,our study provides theoretical insights into Bcl-2 regulation in IP_(3)R-mediated Ca^(2+)release,which may be instrumental for the successful development of therapies to target Bcl-2 for cancer treatment.展开更多
采用溶胶—凝胶旋涂法,通过氢气还原及快速退火两种方式在Si(100)基片上获得纳米Fe Co Pd/Si O2复合薄膜,并对其进行了X射线衍射仪(XRD)和振动样品磁强计(VSM)表征分析,进一步研究不同退火方式对纳米Fe Co Pd/Si O2复合薄膜样品结构和...采用溶胶—凝胶旋涂法,通过氢气还原及快速退火两种方式在Si(100)基片上获得纳米Fe Co Pd/Si O2复合薄膜,并对其进行了X射线衍射仪(XRD)和振动样品磁强计(VSM)表征分析,进一步研究不同退火方式对纳米Fe Co Pd/Si O2复合薄膜样品结构和磁性能的影响.结果表明,经过氢气还原处理后,薄膜中的Fe Co具有较强的(200)择优取向,且薄膜的矫顽力较小,表现出较好的软磁特性.展开更多
基金supported by Shanxi Province Science Foundation for Youths(Grant No.201901D211159)the National Natural Science Foundation of China(Grant Nos.11504214,11874310,and 12090052).
文摘Inositol 1,4,5-trisphosphate receptors(IP_(3)R)-mediated calcium ion(Ca^(2+))release plays a central role in the regulation of cell survival and death.Bcl-2 limits the Ca^(2+)release function of the IP3R through a direct or indirect mechanism.However,the two mechanisms are overwhelmingly complex and not completely understood.Here,we convert the mechanisms into a set of ordinary differential equations.We firstly simulate the time evolution of Ca^(2+)concentration under two different levels of Bcl-2 for the direct and indirect mechanism models and compare them with experimental results available in the literature.Secondly,we employ one-and two-parameter bifurcation analysis to demonstrate that Bcl-2 can suppress Ca^(2+)signal from a global point of view both in the direct and indirect mechanism models.We then use mathematical analysis to clarify that the indirect mechanism is more efficient than the direct mechanism in repressing Ca^(2+)signal.Lastly,we predict that the two mechanisms restrict Ca^(2+)signal synergistically.Together,our study provides theoretical insights into Bcl-2 regulation in IP_(3)R-mediated Ca^(2+)release,which may be instrumental for the successful development of therapies to target Bcl-2 for cancer treatment.
文摘采用溶胶—凝胶旋涂法,通过氢气还原及快速退火两种方式在Si(100)基片上获得纳米Fe Co Pd/Si O2复合薄膜,并对其进行了X射线衍射仪(XRD)和振动样品磁强计(VSM)表征分析,进一步研究不同退火方式对纳米Fe Co Pd/Si O2复合薄膜样品结构和磁性能的影响.结果表明,经过氢气还原处理后,薄膜中的Fe Co具有较强的(200)择优取向,且薄膜的矫顽力较小,表现出较好的软磁特性.