电解水产氢作为一种可持续的清洁能源生产方式,开发更加高效稳定的电催化材料对于促进可再生能源的发展具有重要的意义。硒化镍化合物作为一种新型的电催化剂材料,近年来受到了广泛的关注。与其它常见金属催化剂相比,硒化镍化合物有许...电解水产氢作为一种可持续的清洁能源生产方式,开发更加高效稳定的电催化材料对于促进可再生能源的发展具有重要的意义。硒化镍化合物作为一种新型的电催化剂材料,近年来受到了广泛的关注。与其它常见金属催化剂相比,硒化镍化合物有许多优势,例如更高的化学稳定性和较大的化学电导率,而且,硒化镍化合物具有可调节的导电性、表面积和表面化学活性,使其在水电解反应中展现出良好的电催化性能。掺杂钼的硒化镍纳米材料已经显示出对析氢反应的有希望的催化活性,使它们成为用于水电解的潜在候选材料。钼金属掺杂硒化镍纳米材料的构建及其电解水性能是材料科学和能源研究领域中具有重要意义和价值的课题。本工作合成了一种Mo-Ni5Se5三维孔洞纳米材料,该材料是在Ni5Se5材料上使用含Mo溶液进行离子交换得到了。正如预期的那样,我们所制备的这种材料在HER/OER方面都显示了良好的电催化全解水性能。这些发现为未来钼基硒化镍材料的工业化应用提供了一种优秀的思路。As a sustainable and clean energy production method, the development of more efficient and stable electrocatalytic materials is of great significance to promote the development of renewable energy. Nickel selenide, as a new kind of electrocatalyst material, has received extensive attention in recent years. Compared with other common metal catalysts, nickel selenide compounds have many advantages, such as higher chemical stability and greater chemical conductivity, and nickel selenide compounds have adjustable electrical conductivity, surface area and surface chemical activity, so that they show good electrocatalytic properties in the water electrohydrolysis reaction. Molybdenum doped nickel selenide nanomaterials have shown promising catalytic activity for hydrogen evolution reactions, making them potential candidates for use in hydroelectrolysis. The construction of molybdenum metal-doped nickel selenide nanomaterials and their water electrolysis performance are important and valuable topics in the field of materials science and energy research. In this work, Mo-Ni5Se5 three-dimensional porous nanomaterial was synthesized. The nanomaterial was obtained by ion exchange with Mo solution on Ni5Se5 material. As expected, the materials we have prepared have shown good electrocatalytic properties in HER/OER. These findings provide an excellent idea for the industrial application of molybdenum-based nickel selenide materials in the future.展开更多
氢气作为一种绿色可再生能源,可以缓解能源紧张的问题。电化学水分解作为可再生能源系统发展的关键途径,备受关注。我们非常希望为这些工艺制造高效的电催化剂,以减少其过电位并促进实际应用。近年来,具有超高表面积、可调纳米结构和优...氢气作为一种绿色可再生能源,可以缓解能源紧张的问题。电化学水分解作为可再生能源系统发展的关键途径,备受关注。我们非常希望为这些工艺制造高效的电催化剂,以减少其过电位并促进实际应用。近年来,具有超高表面积、可调纳米结构和优异孔隙率的金属有机框架(MOF)已成为开发电解水的一种有前途的高效活性催化剂。本文介绍了以泡沫镍(NF)为基底,高温磷化制备附着在泡沫镍(NF)上的MOF衍生电催化材料。用SEM、XRD等的表征方法循环分析最终材料的形貌及结构,确定了其析出氢气和氧气过程中的真正活性成分为CoFeNiZnP-MOF。通过电化学等的测试方法,得出经磷化过后的材料在1M KOH溶液中表现出优良的析氢和析氧反应电催化性能,具有低过电位、高催化活性面积、电化学耐久性等优点。在此,本文对MOFs的合成原理和电催化设计提供了新的见解,以实际利用水分解,从而进一步促进其未来在广泛应用中的繁荣发展。As a kind of green renewable energy, hydrogen can alleviate the problem of energy shortage. As a key approach to the development of renewable energy systems, electrochemical water decomposition has attracted much attention. We are keen to manufacture efficient electrocatalysts for these processes to reduce their overpotential and facilitate practical applications. In recent years, metal-organic frameworks (MOF) with ultra-high surface area, adjustable nanostructure and excellent porosity have become a promising and highly active catalyst for the development of water electrolysis. In this paper, MOF-derived electrocatalytic materials attached to nickel foam (NF) were prepared by phosphating at high temperature. The morphology and structure of the final material were analyzed by SEM, XRD and other characterization methods, and the real active component in the process of hydrogen and oxygen precipitation was determined to be CoFeNiZnP-MOF. Through electrochemical testing methods, it is concluded that the phosphating material shows excellent electrocatalytic performance of hydrogen evolution and oxygen evolution reaction in 1M KOH solution, and has the advantages of low overpotential, high catalytic active area and electrochemical durability. Here, this paper provides new insights into the synthesis principles and electrocatalytic design of MOFs to actually utilize water decomposition, thereby further promoting its future prosperity in a wide range of applications.展开更多
近年来,电催化分解水被认为是一种前景较好的产生清洁能源的方法,受到广泛关注。本文采用一步水热法制备了Mo,Mn-NiFe2O4/NF催化剂,泡沫镍作为集流体一方面减少了Mo,Mn-NiFe2O4的团聚,有利于提高电荷转移速率和稳定性。更重要的是,Mn掺...近年来,电催化分解水被认为是一种前景较好的产生清洁能源的方法,受到广泛关注。本文采用一步水热法制备了Mo,Mn-NiFe2O4/NF催化剂,泡沫镍作为集流体一方面减少了Mo,Mn-NiFe2O4的团聚,有利于提高电荷转移速率和稳定性。更重要的是,Mn掺杂诱导电子调制使Ni 3d和O 2p轨道之间的杂交有利于*OOH的形成,同时也会产生更多的氧空位以降低析氧中水分子的吸附能,促进1 M KOH溶液中的析氧反应,而Mo原子的加入可以使得原材料具有丰富的非均相界面,与原始的Mn-NiFe2O4材料相比,表现出更好的电解水活性。在1 M KOH电解质中,所制备的Mo,Mn-NiFe2O4/NF催化剂仅需要133、187和209 mV的低过电位即可获得10、50和100 mA cm−2电流密度下的水分解。本工作提供一种简单钼、锰共掺杂的策略,以同时设计氧空位和电子结构以协同触发析氧反应。展开更多
进入二十一世纪,调节能源结构、扩大可再生能源使用率的需求越发紧迫。氢能源具有不额外产生碳排放的优势,是一种具备未来属性的替代能源,但是迄今为止,氢气的合成主要依赖化石能源转化,而电解水制氢作为绿色制氢方法,是未来必须攻克的...进入二十一世纪,调节能源结构、扩大可再生能源使用率的需求越发紧迫。氢能源具有不额外产生碳排放的优势,是一种具备未来属性的替代能源,但是迄今为止,氢气的合成主要依赖化石能源转化,而电解水制氢作为绿色制氢方法,是未来必须攻克的技术问题。如今,电解水制氢主要依靠高效但价格昂贵的贵金属催化剂。因此,开发低成本、易获得且具备工业应用级稳定性的电催化剂是至关重要的。Entering the 21st century, the need to adjust the energy structure and the expanding use of renewable energy is more and more urgent. Hydrogen energy with the advantage of no additional carbon emissions is an alternative energy with future properties. But so far, the synthesis of hydrogen mainly relies on fossil energy conversion, and the electrolytic water hydrogen production as a as a green method of hydrogen production, is a technical problem that must be overcome in the future. Today, hydrogen production by electrolysis of water relies mainly on efficient but expensive precious metal catalysts. Therefore, the development of low-cost, readily available electrocatalysts with industrial application-level stability is essential.展开更多
二维过渡金属硫化物(TMDs)因其特有的电子结构、多样的化学组成和良好的材料特性,而具有独特的物理和化学性质,在催化、电子、生物传感、能量转换与存储等领域中被广泛研究和应用。所以基于二维材料制备复合薄膜用于可穿戴电子器件的研...二维过渡金属硫化物(TMDs)因其特有的电子结构、多样的化学组成和良好的材料特性,而具有独特的物理和化学性质,在催化、电子、生物传感、能量转换与存储等领域中被广泛研究和应用。所以基于二维材料制备复合薄膜用于可穿戴电子器件的研究进展,我们制备了基于ZIF-8@MoS2纳米颗粒的复合薄膜,并将其应用于可穿戴电子器件。MoS2层状材料良好的机械柔韧性使得其相比于传统的光电子材料在柔性器件领域有着更大的应用空间。ZIF-8@MoS2/PDMS复合膜被用作高效的TENG电材料,可以有效地增加TENG的输出性能。实验发现掺入ZIF-8@MoS2颗粒后,这种TENG的最大峰值短路电流(Isc)和开路电压(Voc)都会随着增加,分别可以达到6.2 μA和194 V。当使用0 Ω至103 MΩ的电阻器用作外部负载以测评基于ZIF-8@MoS2/PDMS复合膜制备的TENG的电输出性能时,发现随着电阻的增加,输出电压也随着增加,并且输出峰值也远远高于纯PDMS制备的TENG。此外,在1 Hz至10 Hz的频率下,短路电流和开路电压都会随着频率的增加而增加,在10 Hz时达到峰值,分别约为6.2 μA和194 V。实验结果也表明了这种电子器件具有较好的稳定性和输出性能,为未来柔性可穿戴器件的发展提供了一定的参考价值。Two-dimensional transition metal dichalcogenides (TMDs) have unique physical and chemical properties due to their unique electronic structure, diverse chemical composition and good material properties, and have been widely studied and applied in the fields of catalysis, electronics, biosensing, energy conversion and storage. Therefore, based on the research progress of preparing composite films for wearable electronic devices based on two-dimensional materials, we have prepared composite films based on ZIF-8@MoS2 nanoparticles and applied them to wearable electronic devices. Compared with traditional optoelectronic materials, MoS2 layered materials have a larger application space in the field of flexible devices due to their good mechanical flexibility. ZIF-8@MoS2/PDMS composite film is used as a high-efficiency TENG electrical material, which can effectively increase the output performance of TENG. Experiments show that the maximum peak short-circuit current (Isc) and open-circuit voltage (Voc) of this TENG can reach 6.2μA and 194V, respectively, when ZIF-8@MoS2 particles are incorporated. When a resistor from 0 Ω to 103 MΩ was used as an external load to evaluate the electrical output performance of TENG prepared based on ZIF-8@MoS2/PDMS composite film, it was found that the output voltage also increased with the increase of resistance, and the output peak value was much higher than that of TENG prepared by pure PDMS. In addition, both the short-circuit current and open-circuit voltage increase with frequency from 1 Hz to 10 Hz, peaking at 10 Hz and about 6.2 μA and 194 V, respectively. The experimental results also show that this electronic device has good stability and output performance, which provides a certain reference value for the development of flexible wearable devices in the future.展开更多
文摘电解水产氢作为一种可持续的清洁能源生产方式,开发更加高效稳定的电催化材料对于促进可再生能源的发展具有重要的意义。硒化镍化合物作为一种新型的电催化剂材料,近年来受到了广泛的关注。与其它常见金属催化剂相比,硒化镍化合物有许多优势,例如更高的化学稳定性和较大的化学电导率,而且,硒化镍化合物具有可调节的导电性、表面积和表面化学活性,使其在水电解反应中展现出良好的电催化性能。掺杂钼的硒化镍纳米材料已经显示出对析氢反应的有希望的催化活性,使它们成为用于水电解的潜在候选材料。钼金属掺杂硒化镍纳米材料的构建及其电解水性能是材料科学和能源研究领域中具有重要意义和价值的课题。本工作合成了一种Mo-Ni5Se5三维孔洞纳米材料,该材料是在Ni5Se5材料上使用含Mo溶液进行离子交换得到了。正如预期的那样,我们所制备的这种材料在HER/OER方面都显示了良好的电催化全解水性能。这些发现为未来钼基硒化镍材料的工业化应用提供了一种优秀的思路。As a sustainable and clean energy production method, the development of more efficient and stable electrocatalytic materials is of great significance to promote the development of renewable energy. Nickel selenide, as a new kind of electrocatalyst material, has received extensive attention in recent years. Compared with other common metal catalysts, nickel selenide compounds have many advantages, such as higher chemical stability and greater chemical conductivity, and nickel selenide compounds have adjustable electrical conductivity, surface area and surface chemical activity, so that they show good electrocatalytic properties in the water electrohydrolysis reaction. Molybdenum doped nickel selenide nanomaterials have shown promising catalytic activity for hydrogen evolution reactions, making them potential candidates for use in hydroelectrolysis. The construction of molybdenum metal-doped nickel selenide nanomaterials and their water electrolysis performance are important and valuable topics in the field of materials science and energy research. In this work, Mo-Ni5Se5 three-dimensional porous nanomaterial was synthesized. The nanomaterial was obtained by ion exchange with Mo solution on Ni5Se5 material. As expected, the materials we have prepared have shown good electrocatalytic properties in HER/OER. These findings provide an excellent idea for the industrial application of molybdenum-based nickel selenide materials in the future.
文摘氢气作为一种绿色可再生能源,可以缓解能源紧张的问题。电化学水分解作为可再生能源系统发展的关键途径,备受关注。我们非常希望为这些工艺制造高效的电催化剂,以减少其过电位并促进实际应用。近年来,具有超高表面积、可调纳米结构和优异孔隙率的金属有机框架(MOF)已成为开发电解水的一种有前途的高效活性催化剂。本文介绍了以泡沫镍(NF)为基底,高温磷化制备附着在泡沫镍(NF)上的MOF衍生电催化材料。用SEM、XRD等的表征方法循环分析最终材料的形貌及结构,确定了其析出氢气和氧气过程中的真正活性成分为CoFeNiZnP-MOF。通过电化学等的测试方法,得出经磷化过后的材料在1M KOH溶液中表现出优良的析氢和析氧反应电催化性能,具有低过电位、高催化活性面积、电化学耐久性等优点。在此,本文对MOFs的合成原理和电催化设计提供了新的见解,以实际利用水分解,从而进一步促进其未来在广泛应用中的繁荣发展。As a kind of green renewable energy, hydrogen can alleviate the problem of energy shortage. As a key approach to the development of renewable energy systems, electrochemical water decomposition has attracted much attention. We are keen to manufacture efficient electrocatalysts for these processes to reduce their overpotential and facilitate practical applications. In recent years, metal-organic frameworks (MOF) with ultra-high surface area, adjustable nanostructure and excellent porosity have become a promising and highly active catalyst for the development of water electrolysis. In this paper, MOF-derived electrocatalytic materials attached to nickel foam (NF) were prepared by phosphating at high temperature. The morphology and structure of the final material were analyzed by SEM, XRD and other characterization methods, and the real active component in the process of hydrogen and oxygen precipitation was determined to be CoFeNiZnP-MOF. Through electrochemical testing methods, it is concluded that the phosphating material shows excellent electrocatalytic performance of hydrogen evolution and oxygen evolution reaction in 1M KOH solution, and has the advantages of low overpotential, high catalytic active area and electrochemical durability. Here, this paper provides new insights into the synthesis principles and electrocatalytic design of MOFs to actually utilize water decomposition, thereby further promoting its future prosperity in a wide range of applications.
文摘近年来,电催化分解水被认为是一种前景较好的产生清洁能源的方法,受到广泛关注。本文采用一步水热法制备了Mo,Mn-NiFe2O4/NF催化剂,泡沫镍作为集流体一方面减少了Mo,Mn-NiFe2O4的团聚,有利于提高电荷转移速率和稳定性。更重要的是,Mn掺杂诱导电子调制使Ni 3d和O 2p轨道之间的杂交有利于*OOH的形成,同时也会产生更多的氧空位以降低析氧中水分子的吸附能,促进1 M KOH溶液中的析氧反应,而Mo原子的加入可以使得原材料具有丰富的非均相界面,与原始的Mn-NiFe2O4材料相比,表现出更好的电解水活性。在1 M KOH电解质中,所制备的Mo,Mn-NiFe2O4/NF催化剂仅需要133、187和209 mV的低过电位即可获得10、50和100 mA cm−2电流密度下的水分解。本工作提供一种简单钼、锰共掺杂的策略,以同时设计氧空位和电子结构以协同触发析氧反应。
文摘进入二十一世纪,调节能源结构、扩大可再生能源使用率的需求越发紧迫。氢能源具有不额外产生碳排放的优势,是一种具备未来属性的替代能源,但是迄今为止,氢气的合成主要依赖化石能源转化,而电解水制氢作为绿色制氢方法,是未来必须攻克的技术问题。如今,电解水制氢主要依靠高效但价格昂贵的贵金属催化剂。因此,开发低成本、易获得且具备工业应用级稳定性的电催化剂是至关重要的。Entering the 21st century, the need to adjust the energy structure and the expanding use of renewable energy is more and more urgent. Hydrogen energy with the advantage of no additional carbon emissions is an alternative energy with future properties. But so far, the synthesis of hydrogen mainly relies on fossil energy conversion, and the electrolytic water hydrogen production as a as a green method of hydrogen production, is a technical problem that must be overcome in the future. Today, hydrogen production by electrolysis of water relies mainly on efficient but expensive precious metal catalysts. Therefore, the development of low-cost, readily available electrocatalysts with industrial application-level stability is essential.
文摘二维过渡金属硫化物(TMDs)因其特有的电子结构、多样的化学组成和良好的材料特性,而具有独特的物理和化学性质,在催化、电子、生物传感、能量转换与存储等领域中被广泛研究和应用。所以基于二维材料制备复合薄膜用于可穿戴电子器件的研究进展,我们制备了基于ZIF-8@MoS2纳米颗粒的复合薄膜,并将其应用于可穿戴电子器件。MoS2层状材料良好的机械柔韧性使得其相比于传统的光电子材料在柔性器件领域有着更大的应用空间。ZIF-8@MoS2/PDMS复合膜被用作高效的TENG电材料,可以有效地增加TENG的输出性能。实验发现掺入ZIF-8@MoS2颗粒后,这种TENG的最大峰值短路电流(Isc)和开路电压(Voc)都会随着增加,分别可以达到6.2 μA和194 V。当使用0 Ω至103 MΩ的电阻器用作外部负载以测评基于ZIF-8@MoS2/PDMS复合膜制备的TENG的电输出性能时,发现随着电阻的增加,输出电压也随着增加,并且输出峰值也远远高于纯PDMS制备的TENG。此外,在1 Hz至10 Hz的频率下,短路电流和开路电压都会随着频率的增加而增加,在10 Hz时达到峰值,分别约为6.2 μA和194 V。实验结果也表明了这种电子器件具有较好的稳定性和输出性能,为未来柔性可穿戴器件的发展提供了一定的参考价值。Two-dimensional transition metal dichalcogenides (TMDs) have unique physical and chemical properties due to their unique electronic structure, diverse chemical composition and good material properties, and have been widely studied and applied in the fields of catalysis, electronics, biosensing, energy conversion and storage. Therefore, based on the research progress of preparing composite films for wearable electronic devices based on two-dimensional materials, we have prepared composite films based on ZIF-8@MoS2 nanoparticles and applied them to wearable electronic devices. Compared with traditional optoelectronic materials, MoS2 layered materials have a larger application space in the field of flexible devices due to their good mechanical flexibility. ZIF-8@MoS2/PDMS composite film is used as a high-efficiency TENG electrical material, which can effectively increase the output performance of TENG. Experiments show that the maximum peak short-circuit current (Isc) and open-circuit voltage (Voc) of this TENG can reach 6.2μA and 194V, respectively, when ZIF-8@MoS2 particles are incorporated. When a resistor from 0 Ω to 103 MΩ was used as an external load to evaluate the electrical output performance of TENG prepared based on ZIF-8@MoS2/PDMS composite film, it was found that the output voltage also increased with the increase of resistance, and the output peak value was much higher than that of TENG prepared by pure PDMS. In addition, both the short-circuit current and open-circuit voltage increase with frequency from 1 Hz to 10 Hz, peaking at 10 Hz and about 6.2 μA and 194 V, respectively. The experimental results also show that this electronic device has good stability and output performance, which provides a certain reference value for the development of flexible wearable devices in the future.